Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension
Date
2021-06-14
Author
Ovalı, Rasim Volga
Şahin, Ramazan
Bek, Alpan
Taşgın, Mehmet Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
256
views
0
downloads
Cite This
Metal nanostructures support plasmon oscillations on their surfaces, which normally decay very quickly. Nevertheless, the lifetime of these oscillations can be extended near a longer lifetime particle, e.g., a molecule. We utilize this phenomenon for ultrahigh (single-molecule) resolution ultrafast apertureless (scattering) applications. We demonstrate the phenomenon with the numerical solutions of 3D Maxwell equations. We use a nm-sized quantum emitter (QE) for the long lifetime particle. We place the QE at the apex of a metal-coated atomic force microscope tip. We illuminate the tip with a femtosecond laser. The near-field on the metal apex decays quickly. After some time, one receives the scattering signal only from the vicinity of the QE. Thus, the resolution becomes single-QE size. We propose the use of a stress-induced defect center in a 2D material as the QE. The tip indentation of the 2D material, transferred to the tip, originates a defect center located right at the sharpest point of the tip, which is exactly at its apex. Our method can equally be facilitated for single-molecule-size chemical manipulation.
Subject Keywords
Atomic force microscopy
,
Defects
,
Femtosecond lasers
,
Maxwell equations
,
Metal coatings
,
Plasmons
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108145129&origin=inward
https://hdl.handle.net/11511/91202
Journal
Applied Physics Letters
DOI
https://doi.org/10.1063/5.0057812
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Simultaneous non-contact atomic force microscopy (nc-AFM)/STM imaging and force spectroscopy of Si(1 0 0)(2 × 1) with small oscillation amplitudes
Özer, H.Özgür; Atabak, Mehrdad; Ellialtǧlu, Recai M.; Oral, Ahmet (2002-03-28)
Si(1 0 0)(2 x 1) surface is imaged using a new non-contact atomic force microscopy (nc-AFM)/STM with sub-Angstrom oscillation amplitudes using stiff tungsten levers. Simultaneous force gradient and STM images of individual dimers and atomic scale defects are obtained. We measured force-distance (f-d) curves with different tips. Some of the tips show long force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction...
Mixed carboranethiol self-assembled monolayers on gold surfaces
Yavuz, Adem; Sohrabnia, Nima; Yılmaz, Ayşen; Danışman, Mehmet Fatih (2017-08-15)
Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (1-carboranethiol, 01) the surface plane, in order to investigate the effect of dipole moment orientation on the fil...
Real-time scanning hall probe microscopy
Oral, Ahmet; HENİNİ, M (1996-08-26)
We describe a low-noise scanning Hall probe microscope having unprecedented magnetic field sensitivity (similar to 2.9x10(-8) T/root Hz at 77 K), high spatial resolution, (similar to 0.85 mu m),nd operating in real-time (similar to 1 frame/s) for studying flux profiles at surfaces. A submicron Hall probe manufactured in a GaAs/A1GaAs two-dimensional electron gas (2DEG) is scanned over the sample to measure the surface magnetic fields using conventional scanning tunneling microscopy positioning techniques. F...
Morphological evolution of intragranular void under the thermal-stress gradient generated by the steady state heat flow in encapsulated metallic films: Special reference to flip chip solder joints
Ogurtani, Tarik Omer; Akyildiz, Oncu (2007-11-30)
The morphological evolution of intragranular voids induced by the surface drift-diffusion under the action of capillary forces, electromigration (EM) forces, and thermal stress gradients (TSG) associated with steady state heat flow is investigated in passivated metallic thin films via computer simulation using the front-tracking method. As far as the device reliability is concerned, the most critical configuration for interconnect failure occurs even when thermal stresses are low if the normalized ratio of ...
High-quality alignment of nematic liquid crystals using periodic nanostructures created by nonlinear laser lithography
Pavlov, Ihor; Dobrovolskiy, A. M.; Kadan, V. M.; Blonskiy, I. V.; Kazantseva, Z. I.; Gvozdovskyy, I. A. (2018-10-01)
It is well known that today two main and well studied methods for alignment of liquid crystals has been used, namely: rubbing and photoalignment technologies, that lead to the change of anisotropic properties of aligning layers and long-range interaction of the liquid crystal molecules in a mesophase. In this manuscript, we use the nonlinear laser lithography technique, which was recently presented as a fast, relatively low-cost method for a large area micro and nanogrooves fabrication based on laser-induce...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. V. Ovalı, R. Şahin, A. Bek, and M. E. Taşgın, “Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension,”
Applied Physics Letters
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108145129&origin=inward.