Synthetic Lubricants Derived from Plastic Waste and their Tribological Performance

2021-01-01
Hackler, Ryan A.
Vyavhare, Kimaya
Kennedy, Robert M.
Çelik, Gökhan
Kanbur, Uddhav
Griffin, Philip J.
Sadow, Aaron D.
Zang, Guiyan
Elgowainy, Amgad
Sun, Pingping
Poeppelmeier, Kenneth R.
Erdemir, Ali
Delferro, Massimiliano
© 2021 Wiley-VCH GmbHThe energy efficiency, mechanical durability, and environmental compatibility of all moving machine components rely heavily on advanced lubricants for smooth and safe operation. Herein an alternative family of high-quality liquid (HQL) lubricants was derived by the catalytic conversion of pre- and post-consumer polyolefin waste. The plastic-derived lubricants performed comparably to synthetic base oils such as polyalphaolefins (PAOs), both with a wear scar volume (WSV) of 7.5×10−5 mm−3. HQLs also performed superior to petroleum-based lubricants such as Group III mineral oil with a WSV of 1.7×10−4 mm−3, showcasing a 44 % reduction in wear. Furthermore, a synergistic reduction in friction and wear was observed when combining the upcycled plastic lubricant with synthetic oils. Life cycle and techno-economic analyses also showed this process to be energetically efficient and economically feasible. This novel technology offers a cost-effective opportunity to reduce the harmful environmental impact of plastic waste on our planet and to save energy through reduction of friction and wear-related degradations in transportation applications akin to synthetic oils.
ChemSusChem

Suggestions

Nanomaterial-Enhanced All-Solid Flexible Zinc-Carbon Batteries
Hiralal, Pritesh; Imaizumi, Shinji; Ünalan, Hüsnü Emrah; Matsumoto, Hidetoshi; Minagawa, Mie; Rouvala, Markku; Tanioka, Akihiko; Amaratunga, Gehan A. J. (2010-05-01)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte laye...
Performance evaluation and comparison of low voltage grid-tied three-phase AC/DC converter configurations with SI and SIC semiconductor switches
Öztoprak, Oğuzhan; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2019)
In this thesis, as compared to silicon IGBT (Si-IGBT) technology, the advantages of using higher efficiency and faster wide bandgap silicon carbide (SiC) semiconductor switches in low voltage three-phase grid-tied PWM DC/AC voltage source converters (VSCs) are investigated in terms of sizing, efficiency and economic considerations for MW-scale photovoltaic power plant applications. As the cost and energy efficiency of a VSC strongly affect the total system economics, this thesis proposes a design methodolog...
Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers
Ubeyli, Mustafa; Deniz, Huseyin; DEMİR, TEYFİK; Ögel, Bilgehan; Gurel, Bayram; KELEŞ, Ömer (2011-03-01)
Utilization of a ceramic front layer provides an improvement in the ballistic efficiency of monolithic metallic materials. In the current paper, the ballistic behavior of laminated composite having alumina front and dual phase steel backing layers was studied using 7.62 mm armor piercing (AP) projectiles under normal impact. The variables used were martensite content of the backing layer and the areal density of the composite. Experimental results showed that utilization of a 6 mm thick alumina front layer ...
Measurement of brushless dc motor characteristics and parameters and brushless dc motor design
Şahin, İlker; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2010)
The permanent magnet motors have become essential parts of modern motor drives recently because need for high efficiency and accurate dynamic performance arose in the industry. Some of the advantages they possess over other types of electric motors include higher torque density, higher efficiency due to absence of losses caused by field excitation, almost unity power factor, and almost maintenance free construction. With increasing need for specialized PM motors for different purposes and areas, much effort...
Analysis, design, and implementation of a 5 kw zero voltage switching phase-shifted full-bridge DC/DC converter based power supply for arc welding machines
Uslu, Mutlu; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2006)
Modern arc welding machines utilize controllable high frequency DC/DC power supply with high dynamic and steady state current regulation performance. In the design robustness, small size and low weight, low complexity, and high efficiency are the defining criteria. The most suitable approach for a 5 kW arc welding machine power supply application is the high frequency Full-Bridge Phase-Shifted Zero Voltage Switching (FB-PS-ZVS) DC/DC converter with an isolation transformer. This converter not only gives the...
Citation Formats
R. A. Hackler et al., “Synthetic Lubricants Derived from Plastic Waste and their Tribological Performance,” ChemSusChem, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107990387&origin=inward.