An Efficient Interference-Aware Constrained Beamforming and Receiver Design for mm-Wave Hybrid Massive MIMO with Non-Orthogonal Multiple Access

2021-7-13
Bayraktar, Murat
This thesis investigates efficient interference-aware beamformer design for mm-wave massive multiple-input and multiple-output (MIMO) systems. Furthermore, adaptation of code-domain non-orthogonal multiple access (NOMA) to mm-wave massive MIMO is studied. The first part of the thesis concentrates on interference-aware pre-beamformer (analog beamformer) design for joint spatial division and multiplexing (JSDM) which is a user-grouping based two-stage beamforming method. Single-carrier frequency domain equalization (SC-FDE) is employed in uplink wideband channels. First, unconstrained statistical analog beamformer of each group, namely, generalized eigenbeamformer (GEB) which has strong interference suppression capability is designed. Then, constant-modulus constrained approximations of unconstrained beamformer are obtained by utilizing alternating minimization algorithms. Moreover, a dynamic subarray algorithm is proposed where the connections between radio frequency (RF) chains and antennas are dynamically changed. Minimum mean square error (MMSE) criterion based iterative block decision feedback equalization (IB-DFE) method, which takes the residual interference in reduced dimension into account, is proposed for intra-group processing. Simulation results verify the superiority of the proposed interference-aware constrained design over existing approaches in terms of beampattern, spectral efficiency, outage capacity, bit-error rate (BER) and channel estimation accuracy. The second part of the thesis is devoted to the development of a novel wideband signal model in beamspace for code-domain NOMA with SC-FDE transmission in JSDM framework. Based on this signal model, a code-beamspace IB-DFE receiver is proposed for joint equalization and multiuser detection, and it is shown that code-domain NOMA is beneficial, especially for mm-wave massive MIMO systems with limited number of RF chains and spatial correlation.

Suggestions

An Efficient Interference-Aware Constrained Massive MIMO Beamforming for mm-Wave JSDM
Bayraktar, Murat; Güvensen, Gökhan Muzaffer (2021-01-01)
Low-complexity beamformer design with practical constraints is an attractive research area for hybrid analog/digital systems in mm-wave massive multiple-input multiple-output (MIMO). This paper investigates interference-aware pre-beamformer (analog beamformer) design for joint spatial division and multiplexing (JSDM) which is a user-grouping based two-stage beamforming method. Single-carrier frequency domain equalization (SC-FDE) is employed in uplink frequency-selective channels. First, unconstrained slowl...
An experimental study for simulation based assessment of information system design performance
Ayyildiz, Bulent; Akman, Ibrahim; Arifoğlu, Ali (2007-07-04)
This paper presents an experimental study for evaluating the decision support value of queueing network (QN) based simulation models for information system design performance. For illustration, queueing network simulation models have been extracted corressponding to three annotated design alternatives of a selected case study. The design alternatives are produced using logical requirements of the selected system. The performance of each alternative is then predicted using quantifiable parameters considering...
Adaptation of Code-Domain NOMA to SC-FDE based Overloaded mmWave Hybrid Massive MIMO
Bayraktar, Murat; Güvensen, Gökhan Muzaffer (2021-01-01)
IEEEIn this paper, we provide a practical framework to resolve whether code-domain NOMA (CD-NOMA) is beneficial when integrated with massive MIMO systems. In order to realize this integration, first, we develop a novel code-beamspace wideband signal model for uplink CD-NOMA in mmWave hybrid massive MIMO systems employing single-carrier (SC) transmission. Then, we apply a state-of-the-art SC frequency domain equalization (SC-FDE) based iterative receiver where the number of radio frequency (RF) chains is lim...
Optimum Discrete Max-Min Style Broadcast Beamforming Design
Demir, Özlem Tuğfe; Tuncer, Temel Engin (2014-04-25)
In this paper, max-mm style transmit beamformer design for single group multicast (broadcast) scenario is considered. The phase and amplitude values of beamformer vector coefficients are selected from finite discrete sets. With the help of integer variables, original optimization problem is converted to a linear form appropriate for mixed integer linear programming. The solution is always feasible as long as the total power is above a certain value. Branch and cut strategy guarantees the optimum solution. P...
A Trie-structured Bayesian Model for Unsupervised Morphological Segmentation
Kurfalı, Murathan; Ustun, Ahmet; CAN BUĞLALILAR, BURCU (2017-04-23)
In this paper, we introduce a trie-structured Bayesian model for unsupervised morphological segmentation. We adopt prior information from different sources in the model. We use neural word embeddings to discover words that are morphologically derived from each other and thereby that are semantically similar. We use letter successor variety counts obtained from tries that are built by neural word embeddings. Our results show that using different information sources such as neural word embeddings and letter s...
Citation Formats
M. Bayraktar, “An Efficient Interference-Aware Constrained Beamforming and Receiver Design for mm-Wave Hybrid Massive MIMO with Non-Orthogonal Multiple Access,” M.S. - Master of Science, Middle East Technical University, 2021.