An Efficient Interference-Aware Constrained Massive MIMO Beamforming for mm-Wave JSDM

2021-01-01
Low-complexity beamformer design with practical constraints is an attractive research area for hybrid analog/digital systems in mm-wave massive multiple-input multiple-output (MIMO). This paper investigates interference-aware pre-beamformer (analog beamformer) design for joint spatial division and multiplexing (JSDM) which is a user-grouping based two-stage beamforming method. Single-carrier frequency domain equalization (SC-FDE) is employed in uplink frequency-selective channels. First, unconstrained slowly changing statistical analog beamformer of each group, namely, generalized eigenbeamformer (GEB) which has strong interference suppression capability is designed by maximizing the mutual information in reduced dimension. Then, constant-modulus constrained approximations of unconstrained beamformer are obtained by utilizing alternating minimization algorithms for fully connected arrays and fixed subarrays. In addition, a dynamic subarray algorithm is proposed where the connections between radio frequency (RF) chains and antennas are changed with changing channel statistics. Convergence of the proposed alternating minimization-based algorithms is provided along with their complexity analysis. It is observed that the additional complexity of proposed algorithms is insignificant for the overall system design. Although most of the interference is suppressed with the help of proposed constrained beamformers, there may be some residual interference after analog beamforming stage. Thus, minimum mean square error (MMSE) criterion based iterative block decision feedback equalization (IB-DFE) method, which takes the residual interference in reduced dimension into account, is promoted for digital beamforming stage. Simulation results verify the superiority of the proposed interference-aware constrained design over existing approaches in terms of beampattern, spectral efficiency, outage capacity, bit-error rate (BER), and channel estimation accuracy.

Suggestions

An Efficient Interference-Aware Constrained Beamforming and Receiver Design for mm-Wave Hybrid Massive MIMO with Non-Orthogonal Multiple Access
Bayraktar, Murat; Güvensen, Gökhan Muzaffer; Department of Electrical and Electronics Engineering (2021-7-13)
This thesis investigates efficient interference-aware beamformer design for mm-wave massive multiple-input and multiple-output (MIMO) systems. Furthermore, adaptation of code-domain non-orthogonal multiple access (NOMA) to mm-wave massive MIMO is studied. The first part of the thesis concentrates on interference-aware pre-beamformer (analog beamformer) design for joint spatial division and multiplexing (JSDM) which is a user-grouping based two-stage beamforming method. Single-carrier frequency domain equali...
An Efficient Hybrid Beamforming and Channel Acquisition for Wideband mm-Wave Massive MIMO Channels
Kurt, Anıl; Güvensen, Gökhan Muzaffer (2019-01-01)
In this paper, an efficient hybrid beamforming architecture together with a novel spatio-temporal receiver processing is proposed for single-carrier (SC) mm-wave wideband massive MIMO channels in time-domain duplex (TDD) mode. The design of two-stage beamformers is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sec...
A novel fault tolerant architecture on a runtime reconfigurable FPGA
Coşkuner, İbrahim Aydın; Güran, Hasan; Department of Electrical and Electronics Engineering (2006)
Due to their programmable nature, Field Programmable Gate Arrays (FPGAs) offer a good test environment for reconfigurable systems. FPGAs can be reconfigured during the operation with changing demands. This feature, known as Runtime Reconfiguration (RTR), can be used to speed-up computations and reduce system cost. Moreover, it can be used in a wide range of applications such as adaptable hardware, fault tolerant architectures. This thesis is mostly concentrated on the runtime reconfigurable architectures. C...
A Reduced complexity hybrid precoding architecture and user grouping algorithms for downlink wideband massive MIMO channels
Kilcioğlu, Emre; Güvensen, Gökhan Muzaffer; Department of Electrical and Electronics Engineering (2019)
In this thesis, an efficient hybrid precoding architecture is proposed for single-carrier (SC) downlink wideband spatially correlated massive multiple-input multiple-output (MIMO) channels. The design of two-stage beamformers is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sectors) and the inter-symbol-interferen...
A CONFIGURABLE GATEWAY FOR DDS-HLA INTEROPERABILITY
KAYA, MUHAMMED ÇAĞRI; Karamanlıoğlu, Alper; Cetintas, I. Caglar; Cilden, Erkin; Canberi, Haluk; Oğuztüzün, Mehmet Halit S. (2019-01-01)
Interoperability is a challenge for constructing Live-Virtual-Constructive (LVC) systems. This study is a step toward LVC interoperability adhering to a gateway-based approach with a particular focus on two standard middleware, namely, Data Distribution Service for Real-Time Systems (DDS) and High-Level Architecture (HLA) for distributed simulation. A gateway is designed and implemented to achieve DDS-HLA interoperability. This gateway has the ability to realize two-way data transfer between DDS and HLA sys...
Citation Formats
M. Bayraktar and G. M. Güvensen, “An Efficient Interference-Aware Constrained Massive MIMO Beamforming for mm-Wave JSDM,” IEEE ACCESS, pp. 87877–87897, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/91592.