Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling the Evaporation of Drying Sessile Droplets with Buoyancy Driven Internal Convection
Download
e3sconf_icchmt2021_04013.pdf
Date
2021-05-18
Author
Akdağ, Osman
Akkuş, Yigit
Çetin, Barbaros
Dursunkaya, Zafer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
64
downloads
Cite This
Droplet evaporation is a fundamental phenomenon encountered in diverse applications such as inkjet printing, DNA mapping, film coating, and electronics cooling. Modeling the evaporation process of a sessile droplet is complicated because of the coupling of several physical phenomena occurring in different phases and various magnitudes such as the buoyant convection of the liquid in millimeter size droplets and that of the surrounding air/water vapor mixture, in the order of meters. In this study, the theoretical framework presented previously for the steadily fed droplets [Int J Therm Sci, 158 (2020) 106529] is extended to resolve the evaporation of drying droplets with a pinned contact line. Based on the quasi-steady-state assumption, buoyant convection inside the droplet and diffusive-convective transport of vapor in the gas domain are modeled. As a test case, drying process of a water droplet with a 68° initial contact angle on a heated substrate is simulated and the predictions of the model are interpreted.
Subject Keywords
Droplet evaporation
,
Evaporation modeling
,
Computational fluid dynamics
URI
https://hdl.handle.net/11511/91583
DOI
https://doi.org/10.1051/e3sconf/202132104013
Conference Name
13th ICCHMT 2021
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A theoretical framework for comprehensive modeling of steadily fed evaporating droplets and the validity of common assumptions
Akkus, Yigit; ÇETİN, BARBAROS; Dursunkaya, Zafer (Elsevier BV, 2020-12-01)
A theoretical framework is established to model the evaporation from continuously fed droplets, promising tools in the thermal management of high heat flux electronics. Using the framework, a comprehensive model is developed for a hemispherical water droplet resting on a heated flat substrate incorporating all of the relevant transport mechanisms: buoyant and thermocapillary convection inside the droplet and diffusive and convective transport of vapor in the gas domain. At the interface, mass, momentum, and...
Comprehensive modeling of heat and mass transport in a micropillar evaporator
Yuncu, Göksel; Dursunkaya, Zafer; Akkuş, Yiğit; Department of Mechanical Engineering (2022-4-05)
Thin-film evaporation and the replenishing capillary liquid flow have paramount importance for various technological applications spanning from desalination to electronics cooling. With the developments enabling faster and cheaper yet more precise fabrication, evaporators with micropillar arrays have attracted substantial attention to sustain efficient evaporation fed by passive liquid transport. Although considerable effort has been devoted to designing optimized wicks, the full picture is still blurry due...
Investigation of warpage behavior of single crystal silicon on a silicon Adhesive ceramic integrated structure at cryogenic temperatures
Baloğlu, Can; Okutucu Özyurt, Hanife Tuba; Dursunkaya, Zafer (2016-03-17)
Understanding thermal stress and warpage behavior of heterogeneous component assemblies is vital in infrared sensor applications of silicon semiconductor material. The silicon semiconductor warpage behavior of the integrated structure composed of silicon material itself, an adhesive layer and a ceramic layer is analyzed by both FEM and experimental studies. The studies are performed between room temperature and 80 K. Thickness of each layer has an effect on the warpage. The silicon warpage of the initial ba...
Effects of optical design modifications on thermal performance of a highly reflective HfO2/SiO2/TiO2 three material coating
OCAK, M.; Sert, Cüneyt; Okutucu-Ozyurt, T. (Springer Science and Business Media LLC, 2018-02-01)
Effects of layer thickness modifications on laser induced temperature distribution inside three material, highly reflective thin film coatings are studied with numerical simulations. As a base design, a 21 layer coating composed of HfO2, SiO2 and TiO2 layers of quarter wave thickness is considered. First, the laser induced temperature distribution in this base design is obtained. Then the layer thicknesses of the base design are modified and the corresponding temperature distributions in four alternative no...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Akdağ, Y. Akkuş, B. Çetin, and Z. Dursunkaya, “Modeling the Evaporation of Drying Sessile Droplets with Buoyancy Driven Internal Convection,” presented at the 13th ICCHMT 2021, Paris, Fransa, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/91583.