Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerodynamic validation studies on the performance analysis of iced wind turbine blades
Date
2019-10-15
Author
YIRTICI, ÖZCAN
Cengiz, Kenan
Özgen, Serkan
Tuncer, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
Ice accretion on wind turbine blades distorts blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions, and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model in a parallel computing environment. The predicted iced profiles are first validated with the experimental and numerical data available in the literature. 2D flow solutions and aerodynamic loads over iced blade profiles are obtained with 3 different flow solvers of increasing fidelity; XFOIL, an open-source panel code coupled with a turbulent boundary layer model, SU2, an open-source RANS solver, and METUDES, an in-house DDES solver. The power production losses of a 30 kW wind turbine operating with iced blades are then investigated in detail. It is shown that the XFOIL-based tool developed for the performance analysis of iced wind turbines successfully predicts ice profiles on turbine blades under various icing conditions and the consequent power losses. About 20% power loss is predicted for a 30 kW wind turbine exposed to icing conditions for an hour.
Subject Keywords
General Engineering
,
General Computer Science
URI
https://hdl.handle.net/11511/39113
Journal
COMPUTERS & FLUIDS
DOI
https://doi.org/10.1016/j.compfluid.2019.104271
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Ice Accretion Prediction on Wind Turbines and Consequent Power Losses
YIRTICI, ÖZCAN; Tuncer, İsmail Hakkı; Özgen, Serkan (2016-10-07)
Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the en...
Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm
Polat, Ozge; Tuncer, İsmail Hakkı (2013-12-31)
An aerodynamic shape optimization methodology based on Genetic Algorithm and Blade Element Momentum theory is developed for rotor blades of horizontal axis wind turbines Optimization studies are performed for the maximization of power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver with a boundary layer model, XFOIL, provides sectional aerodynamic loads. The sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of the b...
Aerodynamic Shape Optimization for Reducing Ice Induced Losses on Wind Turbine Blades
Yırtıcı, Özcan; Tuncer, İsmail Hakkı (null; 2019-05-14)
Ice accretion on wind turbines modifies the blade shape profile and causes alteration in the aerodynamic characteristics of the blades. The objective of this study is to optimize the blade geometry to reduce performance losses by minimizing ice accretion in cold climate regions and mountainous areas where wind energy resources are plentifully found. In this study, The Gradient Based Optimization Method and Blade Element Momentum Method will be employed together with an ice accretion prediction tool for esti...
Wind Turbine Performance Losses Due to the Ice Accretion on the Turbine Blades
Yirtici, Ozcan; Sevine, Tansu; Özgen, Serkan; Tuncer, İsmail Hakkı (2018-01-01)
Ice accretion on wind turbine blades modifies the blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model and 2D flow solvers XFOIL and SU2. The predicted iced profiles are first validated with the experime...
Performance Degradation Analysis of an Iced TurbineBlade by Using Detached-Eddy Simulation
Yırtıcı, Özcan; Cengiz, Kenan; Tuncer, İsmail Hakkı (null; 2018-05-14)
Ice accretion on the turbine blades change the initial shape and this cause alteration in the aerodynamic characteristic of the blades. The objective of the study is to predict performance degradation on wind turbines due to icing. The aerodynamic coefficients are being computed using a Detached-eddy Simulation approach. The influence of the losses on turbine performance will be analyzed through a Blade Element Momentum methodology.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. YIRTICI, K. Cengiz, S. Özgen, and İ. H. Tuncer, “Aerodynamic validation studies on the performance analysis of iced wind turbine blades,”
COMPUTERS & FLUIDS
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39113.