Manganese Doped Fluorescent Paramagnetic Nanocrystals for Dual-Modal Imaging

Download
2014-12-01
Sharma, Vijay Kumar
Gokyar, Sayim
Keleştemur, Yusuf
Erdem, Talha
Unal, Emre
Demir, Hilmi Volkan
In this work, dual-modal (fluorescence and magnetic resonance) imaging capabilities of water-soluble, low-toxicity, monodisperse Mn-doped ZnSe nanocrystals (NCs) with a size (6.5 nm) below the optimum kidney cutoff limit (10 nm) are reported. Synthesizing Mn-doped ZnSe NCs with varying Mn2+ concentrations, a systematic investigation of the optical properties of these NCs by using photoluminescence (PL) and time resolved fluorescence are demonstrated. The elemental properties of these NCs using X-ray photoelectron spectroscopy and inductive coupled plasma-mass spectroscopy confirming Mn2+ doping is confined to the core of these NCs are also presented. It is observed that with increasing Mn2+ concentration the PL intensity first increases, reaching a maximum at Mn2+ concentration of 3.2 at% (achieving a PL quantum yield (QY) of 37%), after which it starts to decrease. Here, this high-efficiency sample is demonstrated for applications in dual-modal imaging. These NCs are further made water-soluble by ligand exchange using 3-mercaptopropionic acid, preserving their PL QY as high as 18%. At the same time, these NCs exhibit high relaxivity (approximate to 2.95 mM(-1) s(-1)) to obtain MR contrast at 25 degrees C, 3 T. Therefore, the Mn2+ doping in these water-soluble Cd-free NCs are sufficient to produce contrast for both fluorescence and magnetic resonance imaging techniques.

Suggestions

Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes
Saito, Y.; Meguro, M.; Ashizawa, M.; Waki, K.; Yuksel, R.; Ünalan, Hüsnü Emrah; Matsumoto, H. (Royal Society of Chemistry (RSC), 2017)
Hierarchically nanostructured composite electrodes were prepared by the electrodeposition of manganese dioxide nanowires (MnO2 NWs) with 5-20 nm diameters on electrospun carbon nanofiber (CNF) webs with diameters of 250 and 650 nm. The effects of CNF diameters and mass loading of MnO2 NWs on the hierarchical nanostructure formation and the performance of the composite electrodes were investigated. The internal structure of the composite electrode depended on CNF diameter and mass loading of MnO2 NW. The ele...
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
Sıkan, Fatih; Yaşar, Bengisu; KALAY, İLKAY (Springer Science and Business Media LLC, 2018-04-01)
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 A degrees C). The sequ...
Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis
Bayram, Barış (2015-08-01)
In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m x m configuration (m = 1 - 5) is investigated using finite element analysis (FEA) of a commercially available software package (ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation imped...
Nanocrystallization in Cu-Zr-Al-Sm Metallic Glasses
Sıkan, Fatih; Kalay, İlkay; Kalay, Yunus Eren (null; 2017-02-26)
Abstract The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequ...
SNR and total acquisition time analysis of multi-echo FLASH pulse sequence for current density imaging
Sadighi, Mehdi; Şişman, Mert; Eyüboğlu, Behçet Murat (2021-12-01)
Magnetic Resonance Current Density Imaging (MRCDI) is an imaging modality providing cross-sectionalcurrent densityðJ Þinformation inside the body. The clinical applicability of MRCDI is highly dependenton the sensitivity of the acquired noisy current-induced magnetic flux densityðB zÞdistributions.Here, a novel analysis is developed to investigate the combined effect of relevant parameters of the RFspoiled gradient echo (FLASH) pulse sequence on the SNR level and the total acquisition time (TAT) of theacqui...
Citation Formats
V. K. Sharma, S. Gokyar, Y. Keleştemur, T. Erdem, E. Unal, and H. V. Demir, “Manganese Doped Fluorescent Paramagnetic Nanocrystals for Dual-Modal Imaging,” SMALL, vol. 10, no. 23, pp. 4961–4966, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92391.