Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing
Download
index.pdf
Date
2016-05-01
Author
Olutas, Murat
Guzelturk, Burak
Keleştemur, Yusuf
Gungor, Kivanc
Demir, Hilmi Volkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
141
views
46
downloads
Cite This
This study develops and shows highly efficient exciton-transferring hybrid semiconductor nanocrystal films of mixed dimensionality comprising quasi 0D and 2D colloids. Through a systematic study of time-resolved and steady-state photoluminescence spectroscopy as a function of the donor-to-acceptor molar concentration ratio and temperature, a high-efficiency nonradiative energy transfer (NRET) process from CdZnS/ZnS core/shell quantum dots (QDs) directed to atomically flat CdSe nanoplatelets (NPLs) in their solid-state thin films is uncovered. The exciton funneling in this system reaches transfer efficiency levels as high as 90% at room temperature. In addition, this study finds that with decreasing temperature exciton transfer efficiency is increased to a remarkable maximum level of approximate to 94%. The enhancement in the dipole-dipole coupling strength with decreasing temperature is well accounted by increasing photoluminescence quantum yield of the donor and growing spectral overlap between the donor and the acceptor. Furthermore, NRET efficiency exhibits a highly linear monotonic response with changing temperature. This makes the proposed QD-NPL composites appealing for noncontact sensitive temperature probing based on NRET efficiencies as a new metric. These findings indicate that combining colloidal nanocrystals of different dimensionality enables efficient means of temperature probing at an unprecedented sensitivity level at nanoscale through almost complete exciton transfer.
URI
https://hdl.handle.net/11511/92422
Journal
ADVANCED FUNCTIONAL MATERIALS
DOI
https://doi.org/10.1002/adfm.201505108
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain
Dede, Didem; Taghipour, Nima; Quliyeva, Ulviyya; Sak, Mustafa; Keleştemur, Yusuf; Gungor, Kivanc; Demir, Hilmi Volkan (2019-03-01)
Solution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe1-xTex/CdS core/multicrown hetero-nanoplatelets (NPLs), controlling th...
Design criteria for transparent single-wall carbon nanotube thin-film transistors
Ünalan, Hüsnü Emrah; Kanwal, A; Du Pasquier, A; Chhowalla, M (2006-04-01)
A study based on two-dimensional percolation theory yielding quantitative parameters for optimum connectivity of transparent single-wall carbon nanotube (SWNT) thin films is reported. Optimum SWNT concentration in the filtrated solution was found to be 0.1 mg/L with a volume of 30 mL. Such parameters lead to SWNT fractions in the films of approximately Phi = 1.8 x 10(-3), much below the metallic percolation threshold, which is found to be similar to Phi(c) = 5.5 x 10(-3). Therefore, the performance of trans...
Parallel Computation of 3-D Viscous Flows on Hybrid Grids
Ilgaz, Murat; Tuncer, İsmail Hakkı (2009-10-12)
In this study, a newly developed parallel finite-volume solver for 3-D viscous flows on hybrid grids is presented. The boundary layers in wall bounded viscous flows are discretized with hexahedral cells for improved accuracy and efficiency, while the rest of the domain is discretized by tetrahedral and pyramidal cells. The computations are performed in parallel in a computer cluster. The parallel solution algorithm with hybrid grids is based on domain decomposition which is obtained using the graph partitio...
Computational simulation and realization of three-dimensional metamaterials with various exotic properties
İbili, Hande; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In this study, computational analysis and realization of three-dimensional metamaterial structures that induce negative and zero permittivity and/or permeability values in their host environment, as well as plasmonic nanoparticles that are used to design metamaterials at optical frequencies are presented. All these electromagnetic problems are challenging since effective material properties become negative/zero, while numerical solvers are commonly developed for ordinary positive parameters. In real life, t...
Defect assisted enhanced nonlinear optical performance and optical limiting of pure and doped BiVO4 powders and nanocomposite films
Tekin, Sezen; Tutel, Yusuf; Karatay, Ahmet; Ünalan, Hüsnü Emrah; Elmali, Ayhan (2022-12-01)
© 2022 Elsevier B.V.The linear and nonlinear absorption properties, photoluminescence and optical limiting properties of bismuth vanadate (BiVO4) powders and films were presented in this work. The structural, morphological and optical effects of different doping elements (M: Mo,W and Ni) were investigated (M: BiVO4). XRD and Raman results proved that BiVO4 and M: BiVO4 powders were synthesized in the monoclinic scheelite structure. Twhe powder morphology as found to be changed by Ni and W doping. The nonlin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Olutas, B. Guzelturk, Y. Keleştemur, K. Gungor, and H. V. Demir, “Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing,”
ADVANCED FUNCTIONAL MATERIALS
, vol. 26, no. 17, pp. 2891–2899, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92422.