Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures
Download
index.pdf
Date
2013-12-01
Author
Yeltik, Aydan
Kucukayan-Dogu, Gokce
Guzelturk, Burak
Fardindoost, Somayeh
Keleştemur, Yusuf
Demir, Hilmi Volkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
140
views
49
downloads
Cite This
Solution processed graphene variants including graphene oxide (GO) and reduced graphene oxide (RGO) are promising materials for potential optoelectronic applications. To date, efficiency of the excitation energy transfer into GO and RGO thin layers has not been investigated in terms of donor-acceptor separation distance. In the present work, we study nonradiative energy transfer (NRET) from CdSe/CdS quantum dots into single and/or double layer GO or RGO using time-resolved fluorescence spectroscopy. We observe shorter lifetimes as the separation distance between the QDs and GO or RGO decreases. In accordance with these lifetimes, the rates reveal the presence of two different mechanisms dominating the NRET. Here we show that excitonic NRET is predominant at longer intervals while both excitonic and nonexcitonic NRET exist at shorter distances. In addition, we find the NRET rate behavior to be strongly dependent on the reduction degree of the GO-based layers. We obtain high NRET efficiency levels of similar to 97 and similar to 89% for the closest separation of the QD-RGO pair and the QD-GO pair, respectively. These results indicate that strong NRET from QDs into thin layer GO and RGO makes these solution-processable thin films promising candidates for light harvesting and detection systems.
URI
https://hdl.handle.net/11511/92509
Journal
JOURNAL OF PHYSICAL CHEMISTRY C
DOI
https://doi.org/10.1021/jp408465a
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (2021-01-01)
The employment of graphene and its derivatives, graphene oxide and reduced graphene oxide, is extending from bioimaging and fabrications of biosensors to drug delivery and tissue engineering in the biomedical area. Graphene family-incorporated scaffolds, used in bone tissue engineering and bone regenerative medicine, profit superior properties of these materials, such as enhanced mechanical properties, large surface area, and the existence of functional groups. At the same time, problems related to cytotoxi...
Development of PBI based membranes for H₂/CO₂ separation
Başdemir, Merve; Yılmaz, Levent; Kalıpçılar, Halil; Department of Chemical Engineering (2013)
Recent developments have confirmed that in the future hydrogen demand in industrial applications will arise because of the growing requirements for H2 in chemical manufacturing, petroleum refining, and the newly emerging clean energy concepts. Hydrogen is mainly produced from the steam reforming of natural gas and water gas shift reactions. The major products of these processes are hydrogen and carbon dioxide. The selective removal of CO2 from the product gas is important because it poisons catalysts in the...
Enhancement of H-2 Storage in Carbon Nanotubes via Doping with a Boron Nitride Ring
Onay, Aytun Koyuncular; Erkoç, Şakir (American Scientific Publishers, 2009-04-01)
Hydrogen storage capacity of carbon nanotubes with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite substitutional doping increases the hydrogen storage capacity of carbon nanotubes.
Investigation of temperature profile in high temperature PEM fuel cell
Çağlayan, Dilara Gülçin; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are promising alternative energy sources for the future. As an advantageous tool in the design of a system, modeling requires less time compared to the experiments as well as its low cost. This study includes both isothermal and non-isothermal three-dimensional mathematical models for a HT-PEMFC having an active area of 25 cm2. Governing equations are solved by using Comsol Multiphysics 5.0 “Batteries & Fuel Cells” module, which is a commer...
Hybrid transparent conductive electrode structure for solar cell application
Altuntepe, Ali; Olgar, Mehmet Ali; Erkan, Serkan; Hasret, Onur; Kececi, Ahmet Emin; Kokbudak, Gamze; TOMAKİN, MURAT; Seyhan, Ayse; Turan, Raşit; Zan, Recep (2021-12-01)
This study draws on our experiences with graphene to perform a hybrid TCO structure composed of AZO and graphene. We first set out to enhance the electrical and optical properties of AZO to enable its use especially in the field of solar cell. Hence, in our study, we deposited various thicknesses of AZO thin films on glass substrates and transferred single layer graphene on them to realize the formation of hybrid TCO structure. Among the various AZO film thicknesses, the optimum one, 300 nm, was determined ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Yeltik, G. Kucukayan-Dogu, B. Guzelturk, S. Fardindoost, Y. Keleştemur, and H. V. Demir, “Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures,”
JOURNAL OF PHYSICAL CHEMISTRY C
, vol. 117, no. 48, pp. 25298–25304, 2013, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92509.