Parallel shape optimization of a missile on a grid infrastructure

2011-01-01
Oktay, Erdal
Merttopcuoglu, Osman
Şener, Cevat
Ketenci, Ahmet
Akay, Hasan U.
A computational tool is developed to be used in the preliminary design of an air vehicle. This tool parametrically optimizes the airframe shape. In order to search the entire solution space thoroughly, a genetic algorithm is used. Code parallelization is utilized to decrease the convergence time of the airframe shape design of a realistic missile geometry on a Grid infrastructure to further improve the search quality. In this work, a generic missile geometry is taken as a test case for a design application. The problem is to maximize the weighted average of lift-to-drag ratio for given mass and propulsion unit. © 2010 Springer.
20th International Series of Meetings on Parallel Computational Fluid Dynamics, CFD 2008

Suggestions

Comparison of Inverter Topologies Suited for Integrated Modular Motor Drive Applications
Ugur, Mesut; Sarac, Hakan; Keysan, Ozan (2018-08-30)
In this paper, various inverter topologies are compared for integrated modular motor drive (IMMD) applications. Two-level voltage source inverter (2L-VSI), three level voltage source inverter (3L-VSI) and series/parallel combinations of these topologies with system level modularity are compared in terms of voltage and current harmonic spectrum, passive component sizes and motor drive efficiency. New generation wide band-gap GaN power semiconductor devices are utilized in modular topologies and they are comp...
Comparison of conventional deep drawing, hydromechanical deep-drawing and high pressure sheet metal forming by numerical experiments
Onder, IE; Tekkaya, AE (2005-08-19)
Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydromechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing rati...
Optimization of compliant parts of a hybrid trailing edge control surface of a morphing unmanned aerial vehicle
Arslan, Pınar; Gürses, Ercan; Department of Aerospace Engineering (2017)
In this thesis, optimization studies are conducted for compliant parts of a hybrid trailing edge control surface of an unmanned aerial vehicle (UAV). The geometry of the control surface was taken from a previous study conducted in [1], and then regenerated parametrically through Design Modeler tool of ANSYS Workbench v15.0. The finite element model of the control surface is created by using ANSYS Workbench v15.0 Static Structural module. The optimization study of the compliant part is conducted by using Ada...
Tümleşik Modüler Motor Sürücü Sistemi Tasarımı
Uğur, Mesut; Keysan, Ozan (null; 2017-10-25)
Bu çalışmada, bir Tümleşik Modüler Motor Sürücü (TMMS) sistemi tasarımı gerçekleştirilmiştir. TMMS sistemi için modüler bir kesirli oluklu, konsantre sargılı (FSCW), sabit mıknatıslı senkron motor (PMSM) ile birlikte Galyum Nitrat (GaN) teknolojisine dayalı modüler motor sürücü güç katı tasarımı yapılmıştır. Konvansiyonel sistemlere göre %2’lik verim artışı sağlanmıştır. Tümleşik motor sürücü sistemine uygun DA bara kondansatör seçimi gerçekleştirilmiştir. Interleaving tekniği kullanılarak kondansatör boyut...
Multi-physics design optimisation of a GaN-based integrated modular motor drive system
UĞUR, MESUT; Keysan, Ozan (2019-06-01)
Here, a multi-physics approach is presented for the design optimisation of an integrated modular motor drive (IMMD). The system is composed of a modular permanent magnet synchronous motor (PMSM) and a GaN-based modular motor drive power stage. The multi-physics model includes motor drive inverters and DC-link capacitor bank (electrical model), stator windings and rotor magnets (electromagnetic model), heat sink (thermal model), and a geometrical model. The main purpose of the design optimisation is to obtai...
Citation Formats
E. Oktay, O. Merttopcuoglu, C. Şener, A. Ketenci, and H. U. Akay, “Parallel shape optimization of a missile on a grid infrastructure,” Lyon, Fransa, 2011, vol. 74 LNCSE, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78651524056&origin=inward.