Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of conventional deep drawing, hydromechanical deep-drawing and high pressure sheet metal forming by numerical experiments
Date
2005-08-19
Author
Onder, IE
Tekkaya, AE
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydromechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry.
URI
https://hdl.handle.net/11511/65786
DOI
https://doi.org/10.1063/1.2011281
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Assessment of sheet metal forming processes by numerical experiments
Önder, İ. Erkan; Tekkaya, A. Erman; Department of Mechanical Engineering (2005)
Sheet metal forming technologies are challenged especially by the improvements in the automotive industry in the last decades. To fulfill the customer expectations, safety requirements and market competitions, new production technologies have been implemented. This study focuses on the assessment of conventional and new sheet metal forming technologies by performing a systematic analysis. A geometry spectrum consisting of six different circular, elliptic, quad cross-sections are selected for the assessment ...
Parallel shape optimization of a missile on a grid infrastructure
Oktay, Erdal; Merttopcuoglu, Osman; Şener, Cevat; Ketenci, Ahmet; Akay, Hasan U. (2011-01-01)
A computational tool is developed to be used in the preliminary design of an air vehicle. This tool parametrically optimizes the airframe shape. In order to search the entire solution space thoroughly, a genetic algorithm is used. Code parallelization is utilized to decrease the convergence time of the airframe shape design of a realistic missile geometry on a Grid infrastructure to further improve the search quality. In this work, a generic missile geometry is taken as a test case for a design application....
Experimental investigation of morphing wing aerodynamics by force measurements and particle image velocimetry
Özçakmak, Özge Sinem; Özgen, Serkan; Department of Aerospace Engineering (2015)
Recently, new developments in on manufacturing technologies, aircraft materials, sensors, actuators, and other mechanisms raised the interest in morphing wings. Instead of conventional wings, which are optimized only for one flight condition, morphing wings can adapt themselves for different missions, mission segments and associated flight conditions. The focus of this thesis is the experimental analysis of a morphing wing, the planform and airfoil shapes that were made available from a separate numerical s...
Measurement of brushless dc motor characteristics and parameters and brushless dc motor design
Şahin, İlker; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2010)
The permanent magnet motors have become essential parts of modern motor drives recently because need for high efficiency and accurate dynamic performance arose in the industry. Some of the advantages they possess over other types of electric motors include higher torque density, higher efficiency due to absence of losses caused by field excitation, almost unity power factor, and almost maintenance free construction. With increasing need for specialized PM motors for different purposes and areas, much effort...
Mechanical characterization of additively manufactured Ti-6Al-4V aircraft structural components produced by electron beam melting
Yılmaz, Fatih; Şahin, Melin; Gürses, Ercan; Department of Aerospace Engineering (2022-8-25)
Weight reduction of structural parts is one of the most important efforts of design and analysis studies to improve fuel efficiency and flight performance of aerospace vehicles through topology optimization creating complex geometric designs that are lighter but cannot be produced via conventional manufacturing methods. Instead, the manufacturing of the resulting designs is possible with additive manufacturing methods where the final product is obtained by adding layer upon layer to obtain close to the near...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Onder and A. Tekkaya, “Comparison of conventional deep drawing, hydromechanical deep-drawing and high pressure sheet metal forming by numerical experiments,” 2005, vol. 778, p. 563, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65786.