Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets
Date
2014-07-01
Author
Guzelturk, Burak
Keleştemur, Yusuf
Olutas, Murat
Delikanli, Savas
Demir, Hilmi Volkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
Colloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/Cds core/crown NPLs having different Cds crown size with one- and two-photon absorption pumping. The core/crown NPLs exhibit enhanced gain performance as compared to the core-only NPLs due to increased absorption cross section and the efficient interexciton funneling, which is from the CdS crown to the (de core. One- and two-photon absorption pumped amplified spontaneous emission thresholds are found as low as 41 mu J/cm(2) and 4.48 mJ/cm(2), respectively. These thresholds surpass the best reported optical gain performance of the state-of-the-art colloidal nanocrystals (i.e., quantum dots, nanorods, etc.) emitting in the same spectral range as the NPLs. Moreover, gain coefficient of the NPLs is measured as high as 650 cm(-1), which is 4-fold larger than the best reported gain coefficient of the colloidal quantum dots. Finally, we demonstrate a two-photon absorption pumped vertical cavity surface emitting laser of the NPLs with a lasing threshold as low as 2.49 mJ/cm(2). These excellent results are attributed to the superior properties of the NPLs as optical gain media.
URI
https://hdl.handle.net/11511/92723
Journal
ACS NANO
DOI
https://doi.org/10.1021/nn5022296
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films
Guzelturk, Burak; Keleştemur, Yusuf; Akgul, Mehmet Zafer; Sharma, Vijay Kumar; Demir, Hilmi Volkan (2014-07-01)
Colloidal quantum dots (QDs) offer advantageous properties as an optical gain media for lasers. Optical gain in the QDs has been shown in the whole visible spectrum, yet it has been intrinsically challenging to realize efficient amplified spontaneous emission (ASE) and lasing in the blue region of the visible spectrum. Here, we synthesize large-sized core/gradient shell CdZnS/ZnS QDs as an efficient optical gain media in the blue spectral range. In this Letter, we demonstrate for the first time that two-pho...
3D-graphene-laser patterned p-type silicon Schottky diode
Orhan, Elif Oz; Efil, Esra; Bayram, Ozkan; Kaymak, Nuriye; Berberoğlu, Halil; Candemir, Ozun; Pavlov, Ihor; Ocak, Sema Bilge (Elsevier BV, 2021-01-01)
© 2020 Elsevier LtdThe influence of the laser patterning (LP) process on the quality of graphene (Gr) film and Schottky diode characteristics was researched in this study. First of all, p-type silicon (Si) was patterned by homemade femtosecond laser source. To compare the resulting effect, non-patterned n-Si and p-Si were used as substrates. To achieve vertically oriented three-dimensional (3D) Gr nanosheets (VGNs) onto the laser patterned p-type Si, non-patterned n-Si, and p-Si substrates, we used Radio-Fr...
Synthesis and characterization of semiconductor thin films for photovoltaic applications
Tezel, Tamer; Küçükyavuz, Zuhal; Department of Chemistry (2009)
Cadmium sulfide (CdS) thin films are very attractive materials due to their tunable optical properties and potential applications in not only photovoltaic devices but also in electronics, bio-labeling and fluorescence imaging. Recently, there is a great interest in flexible photovoltaic devices due to their unique properties such as very low weight, mechanical durability and large area applications. Organic semiconductors and their heterojunctions with inorganic materials are the most promising candidates f...
Numerical and experimental investigation on laser damage threshold of highly reflective multilayer thin films
Ocak, Mustafa; Sert, Cüneyt; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2016)
The laser induced temperature distributions on the optical thin films are investigated in this study. Effects of optical design modifications on thermal performance of highly reflective (HR) multilayer thin films are analyzed. Firstly, a conventional 19 layer HR coating is selected as a reference and the laser induced temperature distribution is evaluated on it. Then, alternative HR designs are developed by employing non-quarter wave layers, over coat (OC) layers and two high index materials in the coating ...
Investigation of gmpls applications in optical systems
Göken, Burcu; Ergül, Rüyal; Department of Electrical and Electronics Engineering (2005)
In this study, possible applications of label switching in large area, fully optical networks are investigated. The objective was to design a label assignment method by using Generalized Multi-Protocol Label Switching (GMPLS) concept to get an efficient optical network operation. In order to fulfill this objective, two new approaches were proposed: a label assignment method and a concatenated label structure. Label assignment method was designed to provide an efficient utilization of resources. Concatenated...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Guzelturk, Y. Keleştemur, M. Olutas, S. Delikanli, and H. V. Demir, “Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets,”
ACS NANO
, vol. 8, no. 7, pp. 6599–6605, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92723.