Fullerene-Based Mimics of Biocatalysts Show Remarkable Activity and Modularity.

Gülseren, Gülcihan
Saylam, Aytül
Marıon, Antoıne
Özçubukçu, Salih
The design of catalysts with greater control over catalytic activity and stability is a major challenge with substantial impact on fundamental chemistry and industrial applications. Due to their unparalleled diversity, selectivity, and efficiency, enzymes are promising models for next-generation catalysts, and considerable efforts have been devoted to incorporating the principles of their mechanisms of action into artificial systems. We report a heretofore undocumented catalyst design that introduces fullerenes to the field of biocatalysis, which we refer to as fullerene nanocatalysts, and that emulates enzymatic active sites through multifunctional self-assembled nanostructures. As a proof-of-concept, we mimicked the reactivity of hydrolases using fullerene nanocatalysts functionalized with the basic components of the parent enzyme with remarkable activity. Owing to the versatile amino acid-based functionalization repertoire of fullerene nanocatalysts, these next-generation carbon/biomolecule hybrids have potential to mimic the activity of other families of enzymes and, therefore, offer new perspectives for the design of biocompatible, high-efficiency artificial nanocatalysts.
ACS applied materials & interfaces


Quantal description of nucleon exchange in a stochastic mean-field approach
Ayik, S.; YILMAZ TÜZÜN, ÖZGÜL; YILMAZ, BÜLENT; Umar, A. S.; GÖKALP, AHMET; Turan, Gürsevil; Lacroix, D. (2015-05-04)
The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems.
Mechanistic Aspects of a Surface Organovanadium(III) Catalyst for Hydrocarbon Hydrogenation and Dehydrogenation
Kaphan, David M.; Ferrandon, Magali S.; Langeslay, Ryan R.; Çelik, Gökhan; Wegener, Evan C.; Liu, Cong; Niklas, Jens; Poluektov, Oleg G.; Delferro, Massimiliano (2019-12-06)
Understanding the mechanisms of action for base metal catalysis of transformations typically associated with precious metals is essential for the design of technologies for a sustainable energy economy. Isolated transition-metal and post-transition-metal catalysts on oxides such as silica are generally proposed to effect hydrogenation and dehydrogenation by a mechanism featuring either sigma-bond metathesis or heterolytic bond cleavage as the key bond activation step. In this work, an organovanadium(III) co...
Formaldehyde Selectivity in Methanol Partial Oxidation on Silver: Effect of Reactive Oxygen Species, Surface Reconstruction, and Stability of Intermediates
Karatok, Mustafa; Şensoy, Mehmet Gökhan; Vovk, Evgeny I.; Toffoli, Hande; Toffoli, Daniele; Ozensoy, Emrah (2021-01-01)
Selective oxidation reactions on heterogeneous silver catalysts are essential for the mass production of numerous industrial commodity chemicals. However, the nature of active oxygen species in such reactions is still debated. To shed light on the role of different oxygen species, we studied the methanol oxidation reaction on Ag(111) single-crystal model catalyst surfaces containing two dissimilar types of oxygen (electrophilic, Oe and nucleophilic, On). X-ray photoelectron spectroscopy and low energy elect...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride
Zahmakiran, Mehmet; Özkar, Saim (2009-03-03)
Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications,,is it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H-2/mol Ru and turnover frequency (TOF) up to 33 000 mol H-2/mol Ru center dot h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium bo...
Citation Formats
G. Gülseren, A. Saylam, A. Marıon, and S. Özçubukçu, “Fullerene-Based Mimics of Biocatalysts Show Remarkable Activity and Modularity.,” ACS applied materials & interfaces, vol. 13, no. 38, pp. 45854–45863, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85116027300&origin=inward.