Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling, control and design of a clutched parallel elastically actuated articulated robotic leg through virtual tunable damping
Date
2020-01-01
Author
Candan, Sinan Şahin
Tanfener, Emre
Turgut, Ali Emre
Saranlı, Uluç
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
In this study, design, modelling and control of a clutched parallel elastically actuated articulated leg is presented. Clutch mechanism is introduced to disengage the parallel elastic element when it is not needed. Some of the design principles concerning the ease of manufacturing and assembly are underlined. While the system has two joints at hip and knee that can be actuated, for simplicity, restrained motion of the system in vertical direction is considered only with hip actuation. Controller is based on a template model and the desired motion is obtained by equating (embedding) dynamics of the physical system (anchor) to the template model. Spring loaded inverted pendulum (SLIP) model including a virtual viscous damper is chosen as the template. Controller decides on the virtual damping constant in the template to reach desired apex positions. A wrapping cam mechanism is introduced to equate the potential energy function of the parallel spring to the desired linear spring of SLIP model. To complete embedding, necessary torque is calculated by equating the virtual works of the inputs. Overall, simulation of the hopping system and the important aspects of design are presented.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101259366&origin=inward
https://hdl.handle.net/11511/93440
DOI
https://doi.org/10.1115/imece2020-24665
Conference Name
ASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analytical modeling of asymmetric multi-segment rotor - bearing systems with Timoshenko beam model including gyroscopic moments
Özşahin, Orkun; Özgüven, Hasan Nevzat (2014-11-01)
In this study, analytical modeling and an analysis approach for asymmetric multi-segment rotor bearing systems are presented. Timoshenko beam model which includes the effect of gyroscopic moments is employed for modeling rotor segments. Instead of applying FEM, sub-segment Frequency Response Functions (FRFs) are obtained analytically, and sub-segment FRFs obtained are coupled by using receptance coupling method. Bearing properties are included into system dynamics by employing structural modification techni...
Prediction of automobile tire cornering force characteristics by finite element modeling and analysis
Tönük, Ergin; Ünlüsoy, Yavuz Samim (2001-05-01)
In this study, a detailed finite element model of a radial automobile tire is constructed for the prediction of cornering force characteristics during the design stage. The nonlinear stress-strain relationship of rubber as well as a linear elastic approximation, reinforcement, large displacements, and frictional ground contact are modeled. Validity of various simplifications is checked. The cornering force characteristics obtained by the finite element tire model are verified on the experimental setup const...
Design of kalman filter based attitude determination and control algorithms for a LEO satellite
Efendioğlu, Gamze; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2019)
The design of different attitude controllers by using reaction wheels and magnetic rods as torque sources and the design of a multi-sensor integrated navigation system are developed for a three-axis stabilized Earth-orbiting microsatellite and presented in this thesis. Firstly, the fundamental parameters relevant to satellite attitude determination are presented, such as attitude sensors and actuators, space environmental effects, coordinate frames, satellite dynamic/kinematic equations with control compone...
Modelling of an articulated flying body and control system design
Güzelcan, Burçin Tutku; Yazıcıoğlu, Yiğit; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2022-12-5)
This study presents the conceptual design of an articulated coaxial rotor Unmanned Air Vehicle (UAV) with three-dimensional dynamical models and a control strategy. Conventional rotary-wing aircrafts operate maneuvers via swashplates which is a complex mechanism adding bulky elements to the aircrafts. While designing light weight UAVs, there appears a need for less complex and compact mechanisms for maneuverability rather than swashplates. There are different methods and mechanisms to acquire maneuvering wi...
Investigation of variations in performance properties of asphalt concrete using image-based finite element model
Karakaya, Yalçın; Güler, Murat; Department of Civil Engineering (2022-7-20)
The objective of this study is to evaluate variations in performance properties of asphalt concrete using a two-dimensional image-based finite element model. Two different asphalt mixtures are used in both laboratory tests and in FEM analyses representing different conditions. A flatbed scanner is then used to capture cross-sectional images of the samples and various image processing techniques are applied to prepare the images for FEM. A unique image vectorization method has been developed to transform cro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ş. Candan, E. Tanfener, A. E. Turgut, and U. Saranlı, “Modelling, control and design of a clutched parallel elastically actuated articulated robotic leg through virtual tunable damping,” Virtual, Online, 2020, vol. 7A-2020, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101259366&origin=inward.