Association of cholesterol 7 alpha-hydroxylase (CYP7A1) promoter polymorphism (rs3808607) and cholesterol 24S-hydroxylase (CYP46A1) intron 2 polymorphism (rs754203) with serum lipids, vitamin D levels, and multiple sclerosis risk in the Turkish population

2021-09-01
SEZER, EDA
CAN DEMİRDÖĞEN, BİRSEN
Demirkaya, Seref
Bulut, Giray
Akkulak, Merve
EVİN, EMRE
Adalı, Orhan
Background Patients with multiple sclerosis (MS) have significantly lower vitamin D levels. Cholesterol is known to be the precursor for vitamin D synthesis, and cholesterol removal is regulated by cholesterol 7 alpha-hydroxylase (CYP7A1) in the liver and cholesterol 24S-hydroxylase (CYP46A1) in the brain. In this study, single nucleotide polymorphisms (SNPs) within the genes CYP7A1 (rs3808607) and CYP46A1 (rs754203) were investigated for their effects on serum lipid profiles, vitamin D levels, and the risk of developing MS. Methods Patients with MS (n = 191) and controls (n = 100) were tested using the PCR-RFLP method to determine their genotypes for rs3808607 and rs754203 SNPs. Results The minor (C) allele frequency for CYP7A1 rs3808607 variation was 0.380 in patients with MS and 0.305 in control subjects (P = .074). For CYP46A1 rs754203, the frequencies of the minor (C) allele were 0.272 and 0.250 in patients and control subjects, respectively (P = .563). Serum vitamin D (25(OH)D3) concentrations were significantly lower in patients than in control subjects (P = .002). The CYP46A1 rs754203 SNP was associated with total cholesterol levels in patients, whereas the CYP7A1 rs3808607 variant was not associated with serum lipid parameters or vitamin D levels in patients or control subjects. Conclusion CYP7A1 rs3808607 and CYP46A1 rs754203 variations are not likely to confer an independent risk for MS development in the Turkish population. To the best of our knowledge, this is the first study to investigate the association between CYP46A1 rs754203 and MS risk.
NEUROLOGICAL SCIENCES

Suggestions

ASSOCIATION OF THE VITAMIN D METABOLIZING CYP24A1, CYP27A1, CYP27B1 AND VITAMIN D RECEPTOR GENETIC POLYMORPHISMS WITH MULTIPLE SCLEROSIS RISK IN TURKISH POPULATION
Bulut, Giray; Adalı, Orhan; Demirkaya, Şeref; Department of Biochemistry (2023-1-25)
Multiple Sclerosis (MS) is the most common nontraumatic cause of young disability. There are many studies indicating the relationship between MS and vitamin D. Activation of vitamin D requires a series of hydroxylations that are conducted by cytochrome P450 enzymes (CYPs). Vitamin D shows its effects by binding to vitamin D receptor (VDR). In the present study, vitamin D metabolism related mitochondrial CYPs (CYP27A1, CYP27B1 and CYP24A1) and VDR gene polymorphisms were selected for investigation. 187 (130 ...
ASSOCIATION OF FLT3 AND NPM1 MUTATIONS IN ACUTE MYELOID LEUKEMIA PATIENTS WITH METABOLOMIC PATTERNS DETERMINED BY MASS SPECTROMETRY
Gerekci Yeşilyurt, Selin; Özen, Can; Özçubukçu, Salih; Department of Biochemistry (2022-8-29)
Acute Myeloid Leukemia is a hematological cancer with high phenotypic and genotypic heterogeneity. Patients diagnosed with AML are categorized into risk groups based on cytogenetic and molecular abnormality tests, which determine the specific treatment regimes. Since risk status determination takes significant amount of time and some emergency patients require immediate treatment, a method to provide fast clinical data that will be the basis for initial treatment regime is needed in the medical commun...
Analyzing the expression patterns of vitamin D metabolizing CYP27B1 and CYP24A1 in brain tissue of vitamin D treated mice with Multiple Sclerosis (MS)
Özdoğan, Dilara; Adalı, Orhan; Evin, Emre; Department of Molecular Biology and Genetics (2022-8)
The etiopathogenesis of Multiple Sclerosis (MS), an inflammatory demyelinating autoimmune disease of the central nervous system, is still unknown. MS is a complex, recurring, and frequently progressing condition. There is a hypothesis that MS is adversely associated with the length and intensity of sunlight exposure and vitamin D concentrations since MS frequency rises with increasing latitude. A female C57BL/6 mouse model for autoimmune encephalomyelitis (EAE) was used in this investigation to examine the ...
INVESTIGATION OF INFLAMMATION ASSOCIATED CYP2E1 AND CYP1A1 EXPRESSION IN THE EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS MOUSE MODEL OF MULTIPLE SCLEROSIS
Solak, Damla; Adalı, Orhan; Department of Molecular Biology and Genetics (2023-1-27)
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease which affects brain and spinal cord. Myelin which wraps around the axon and its progenitor cells, oligodendrocytes, are destroyed in this disease. This results in the loss of signal transmission which leads to axonal, and eventually neuronal loss. There are various symptoms of the disease such as unstable feelings, fatigue, visual disability, muscle spasms, and walking difficulties. The etiology of the disease is still in its infancy; howeve...
Regulation of Glutathione S-Transferase Mu with type 1 diabetes and its regulation with antioxidants
SADİ, GÖKHAN; Kartal, Deniz Irtem; Güray, Nülüfer Tülün (2013-01-01)
Objective: Increased oxidative stress is now related with the pathogenesis and the chronic complications associated with the disease, diabetes mellitus. While roles of oxidative stress in diabetic complications are widely studied, the molecular mechanisms playing role in the regulations of detoxification enzymes in the presence of antioxidants have not been clearly established because of the complexity of the pathways.
Citation Formats
E. SEZER et al., “Association of cholesterol 7 alpha-hydroxylase (CYP7A1) promoter polymorphism (rs3808607) and cholesterol 24S-hydroxylase (CYP46A1) intron 2 polymorphism (rs754203) with serum lipids, vitamin D levels, and multiple sclerosis risk in the Turkish population,” NEUROLOGICAL SCIENCES, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93549.