Efficient simulation-based discrete optimization

Guikema, SD
Davidson, RA
Ertuğrul, Zehra
In many practical applications of simulation it is desirable to optimize the levels of integer or binary variables that are inputs for the simulation model. In these cases, the objective function must often be estimated through an expensive simulation process, and the optimization problem is NP-hard, leading to a computationally difficult problem. We investigate efficient solution methods for this problem, and we propose an approach that reduces the number of runs of the simulation by using ridge regression to approximate some of the simulation calls. This approach is shown to significantly decrease the computational cost but at a cost of slightly worse solution values.
Winter Simulation Conference 2004


Adaptive Kalman filter with multiple fading factors for UAV state estimation
Hajiyev, Chingiz; Söken, Halil Ersin (2009-12-01)
In general case, as an algorithm for estimating the parameters of a linear system, Kalman filter can be utilized without any problem. However, when there is a malfunction in the estimation system, the filter fails and the outputs become inaccurate. In this paper, an Adaptive Kalman Filter with multiple fading factors based gain correction for the case of malfunctions in the estimation system is presented. By the use of an adaptive matrix constituted of multiple fading factors, faulty measurements are taken ...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Improved state estimation for jump Markov linear systems
Orguner, Umut; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2005)
This thesis presents a comprehensive example framework on how current multiple model state estimation algorithms for jump Markov linear systems can be improved. The possible improvements are categorized as: -Design of multiple model state estimation algorithms using new criteria. -Improvements obtained using existing multiple model state estimation algorithms. In the first category, risk-sensitive estimation is proposed for jump Markov linear systems. Two types of cost functions namely, the instantaneous an...
Massive crowd simulation with parallel processing
Yılmaz, Erdal; İşler, Veysi; Department of Information Systems (2010)
This thesis analyzes how parallel processing with Graphics Processing Unit (GPU) could be used for massive crowd simulation, not only in terms of rendering but also the computational power that is required for realistic simulation. The extreme population in massive crowd simulation introduces an extra computational load, which is quite difficult to meet by using Central Processing Unit (CPU) resources only. The thesis shows the specific methods and approaches that maximize the throughput of GPU parallel com...
An entropy based input variable selection approach to identify equally informative subsets for data driven hydrological models
Karakaya, Gülşah; Galelli, Stefano; Ahipaşoğlu, Selin Damla (null; 2015-04-15)
Input Variable Selection (IVS) is an essential step in hydrological modelling problems, since it allows determining the optimal subset of input variables from a large set of candidates to characterize a preselected output. Interestingly, most of the existing IVS algorithms select a single subset, or, at most, one subset of input variables for each cardinality level, thus overlooking the fact that, for a given cardinality, there can be several subsets with similar information content. In this study, we devel...
Citation Formats
S. Guikema, R. Davidson, and Z. Ertuğrul, “Efficient simulation-based discrete optimization,” presented at the Winter Simulation Conference 2004, Washington, Kiribati, 2004, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93570.