Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y(2)O3 high entropy alloys synthesized by mechanical alloying
Date
2021-12-01
Author
Tekin, Mustafa
Polat, Gokhan
Kalay, Yunus Eren
KOTAN, HASAN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
278
views
0
downloads
Cite This
Nanocrystalline CoCrFeNi high entropy alloys (HEAs) with 1 and 4 wt% nanosized Y2O3 were synthesized by high energy mechanical alloying and subjected to annealing treatments at different temperatures up to 1100 degrees C. X-ray diffraction (XRD), focused ion beam microscopy (FIB), and transmission electron microscopy (TEM) were used to investigate the microstructures of as-milled and annealed HEAs as a function of annealing temperature and Y2O3 content. The results have shown that the as-milled HEAs were solid solutions with face-centered cubic (fcc) crystal structure, which remained stable even after annealing at 1100 degrees C. The as-milled nanocrystalline CoCrFeNi HEA revealed grain growth upon annealing, reaching 293 nm and 1.45 mu m after annealing at 900 and 1100 degrees C, respectively. This suggests that the nanocrystalline microstructure of CoCrFeNi is not thermally stable at high temperatures. The grain size stability was found to reach around 72 nm with nanosized Y2O3 particles after annealing at 1100 degrees C. Accordingly, 477 +/- 20 HV asmilled hardness of CoCrFeNi was dramatically reduced to 220 +/- 14 HV after annealing at 1100 degrees C due to severe grain coarsening but retained around 450 +/- 23 HV with 4 wt% Y2O3 addition. The correlation between microstructure and hardness was utilized to evaluate the mechanical properties. (c) 2021 Elsevier B.V. All rights reserved.
URI
https://hdl.handle.net/11511/93843
Journal
JOURNAL OF ALLOYS AND COMPOUNDS
DOI
https://doi.org/10.1016/j.jallcom.2021.161363
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Synthesis, characterization and electrochromic properties of copolymer of 3-{[4-(thien-3-yl-methoxy)phenoxy]methyl} thiophene with thiophene
Erden, Ayca; Sahin, Elif; Gullu, Mustafa; Toppare, Levent Kamil (Elsevier BV, 2006-08-01)
(3- {[4-(Thien-3-yl-methoxy)phenoxy]methyl} thiophene) (TMPMT) was synthesized via the reaction of 3-bromomethyl-thiophene with hydroquinone and characterized by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). Electrochemical copolymerization of TMPMT with thiophene in acetonitrile/boron trifluoride diethyl etherate (AN/BFEE) solvent mixture was achieved using tetrabutylammonium tetrafluoroborate (TBAFB) as the supporting electrolyte. Resulting copolymer was characterize...
Surface characterization and radical decay studies of oxygen plasma-treated PMMA films
Ozgen, Ozge; Aksoy, Eda Ayse; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2013-04-01)
Polymethylmethacrylate (PMMA) films were modified by RF oxygen plasma with various powers applied for different periods, and the effects of these parameters on the surface properties such as hydrophilicity, surface free energy (SFE), chemistry, and topography were investigated by water contact angle, goniometer, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy, and the types of the created free radicals and their decay were detected by electron spin resonance spectroscopy (ESR). SFE and c...
Efficient Ceria-Supported Rhodium Nanoparticles as an Electrocatalyst for Hydrogen Evolution
Akbayrak, Merve; Önal, Ahmet Muhtar (The Electrochemical Society, 2019-12-13)
Rh-0/CeO2 catalystwas prepared by the reduction of Rh+3 ions on CeO2 surface and characterized by transmission electron microscopy, inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy and powder X-ray diffractometry techniques. To investigate its electrocatalytic activity for H-2 evolution reaction, a glassy carbon electrode (GCE) was modified with Rh-0/CeO2. The modified electrode was found to exhibit a high electrocatalytic activity (turnover frequency (TOF): 1.56 s(...
Preparation and Comparison of Two Electrodes for Supercapacitors: Pani/CNT/Ni and Pani/Alizarin-Treated Nickel
Koysuren, Ozcan; Du, Chunsheng; Pan, Ning; Bayram, Göknur (Wiley, 2009-07-15)
Polyaniline in emeraldine form was synthesized in the presence of multiwalled carbon nanotubes (CNTs), and the electrochemical capacitance performance of thus formed composite as electrode material has been Studied. The polyaniline/carbon nanotubes (Pani/CNT) composite is found to result in a higher specific capacitance than that of either composite constituent, attributable to the double-layer capacitance behavior of the nanotubes in the Pani/CNT system. However, once assembled into a two-electrode cell, l...
Structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films
Gullu, H. H.; IŞIK, MEHMET; Hasanlı, Nızamı (2018-10-15)
The structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films were investigated by Xray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and optical transmittance measurements. The effect of annealing temperature on the results of applied techniques was also studied in the present paper. EDS results revealed that each of the elements, Cu, Ga and S are presented in the films and Cu and Ga concentration increases whereas S concentration decr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tekin, G. Polat, Y. E. Kalay, and H. KOTAN, “Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y(2)O3 high entropy alloys synthesized by mechanical alloying,”
JOURNAL OF ALLOYS AND COMPOUNDS
, vol. 887, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93843.