Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue
Date
2016-12-01
Author
Heidarizad, Mahdi
Şengör, Sema Sevinç
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
A series of graphene oxide/magnesium oxide nanocomposites (GO/MgO NCs) were and applied for the removal of Methylene Blue (MB) from aqueous solutions. The prepared NCs were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The results showed that MgO particles was successfully decorated on GO. The impacts of different experimental variables on the removal of MB including GO/MgO NCs dosage, pH, contact time, and initial MB concentration were investigated. The experimental analysis of adsorption isotherms indicated that adsorption data was best fit with the Langmuir isotherm model. Among the three different synthesized weight ratios of GO/MgO (5:1, 1:1, and 1:5), 5:1 ratio showed the maximum adsorption capacity as 833 mg/g, which is higher than any previously reported GO-based composites. The synthesized GO/MgO NC is also observed to have higher adsorption capacity for MB removal, in comparison with pure GO and MgO. The kinetic adsorption data was best described by pseudo-second-order kinetic model. The pH of point of zero charge (pH(pzc)) of GO/MgO NCs was determined to be 9.7, 10.5, and 10.5 for ratios 5:1, 1:1, and 1:5, respectively. The results revealed that electrostatic attraction can be the dominant mechanism of adsorption between GO/MgO NCs and MB for pH above pH(pzc); whereas for pH below pH(pzc), other adsorption mechanisms such as hydrogen bonding and pi-pi interaction may attribute to adsorption. The high adsorption capacity of GO/MgO composites, thus makes it a promising adsorbent for water and wastewater treatment. (C) 2016 Elsevier B.V. All rights reserved.
URI
https://hdl.handle.net/11511/93949
Journal
JOURNAL OF MOLECULAR LIQUIDS
DOI
https://doi.org/10.1016/j.molliq.2016.09.049
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Synthesis manganese doped zinc oxide nanoparticles
Altıntaş Yıldırım, Özlem; Durucan, Caner (null; 2016-12-01)
Synthesis of manganese-doped zinc oxide (ZnO:Mn) diluted magnetic semiconductor quantum dots is reported. The synthesis was carried out by room temperature precipitation method using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. Analytical characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The lattice parameters of ZnO:Mn quantum dots-as estima...
Synthesis of zinc oxide nanoparticles elaborated by microemulsion method
Yildirim, Ozlem Altintas; Durucan, Caner (2010-09-17)
Zinc oxide (ZnO) nanoparticles were synthesized by a reverse microemulsion system formed from sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT, or AOT):glycerol:n-heptane. The zinc precursor was zinc acetate dihydrate. The formation of ZnO nanoparticles was achieved by calcination of premature zinc glycerolate microemulsion product in air at 300, 400 and 500 degrees C. The crystal structure and the morphology of the ZnO nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron micr...
Synthesis of copolymers of methoxy polyethylene glycol acrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid: Its characterization and application as superplasticizer in concrete
Buyukyagci, Arzu; Tuzcu, Goezde; Aras, Leyla (Elsevier BV, 2009-07-01)
Water-soluble copolymers of methoxy polyethylene glycol acrylate (mPEGA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were synthesized by free radicalic polymerization and evaluated as slump-retaining dispersant for cement particles. The slump-retaining effect of the synthesized copolymers was studied in terms of reaction pH, composition, and molecular weight of mPEG side chains. mPEG grafted copolymers (mPEGA-co-AMPS) were characterized by FTIR, H-1 NMR. In this study, dilute solution viscometry...
Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability
ŞAHBAZ, DENİZ AKIN; YAKAR, ARZU; Gündüz, Ufuk (2015-05-01)
The aim of this study was to synthesize magnetic Fe3O4 chitosan nanoparticles (m-Fe3O4-CNs) by ionic gelation method and use them as adsorbent for the removal of Bromothymol Blue (BB) from aqueous solutions. Also, the effect of various parameters on the preparation of m-Fe3O4-CNs was investigated in this study. The nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy and ...
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Yıldırım, Özlem Altıntaş; Liu, Yuzi; Petford-Long, Amanda K. (Elsevier BV, 2015-11-15)
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Heidarizad and S. S. Şengör, “Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue,”
JOURNAL OF MOLECULAR LIQUIDS
, vol. 224, pp. 607–617, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93949.