Energy, Hydrogen and Biohydrogen: Perspectives, Examples and Outlook

2021-12-03
Hydrogen produced by microorganisms, usually referred to as biohydrogen, offers a sustainable route for a green, sustainable fuel since it can be obtained from renewable resources such as sunlight and organic nutrients, under relatively mild operating conditions. Many genera of microorganisms are capable of hydrogen production when subjected to the right environmental factors. Among hydrogen-producing organisms, photosynthetic bacteria (also called photofermentative bacteria) are promising, as they use sunlight as their energy source and are able to grow and produce hydrogen using diverse types of substrates by virtue of their flexible and robust metabolism. A review of the past research and future directions for the microbial hydrogen production studies of the Middle East Technical University, Biohydrogen Group are reviewed.

Suggestions

Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses
Avcioglu, Sevler Gokce; Ozgur, Ebru; Eroglu, Inci; Yucel, Meral; Gündüz, Ufuk (2011-08-01)
Hydrogen is regarded as an ideal energy carrier if it is produced from renewable resources such as biomass. Sequential operation of dark and photofermentation allows a highly efficient production of hydrogen from biomass, as maximal conversion of the energy in the carbohydrates to hydrogen can be achieved. In this study photofermentative hydrogen production was carried out in a solar panel photobioreactor by Rhodobacter capsulatus wild type (DSM 1710) and Rhodobacter capsulatus hup(-) (YO3) strain on the mo...
Photofermentative hydrogen production from molasses: Scale-up and outdoor operation at low carbon-to-nitrogen ratio
Savasturk, Dilan; Kayahan, Emine; Koku, Harun (2018-06-28)
Photofermentative hydrogen production was carried out under outdoor conditions with a Rhodobacter capsulatus strain on molasses, a renewable and sustainable feedstock. An existing photobioreactor design was scaled-up from 9 L to 20 L. The decreased carbon-to nitrogen (C/N) ratio of 13.0, compared to our previous work, accelerated growth and resulted in a reduced lag period for hydrogen production as well as higher productivities in the exponential phase. However, the low C/N ratio also promoted a high optic...
Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix
Liu, Ruijia; Liu, Guijian; Yousaf, Balal; Niu, Zhiyuan; Abbas, Qumber (2022-01-01)
Biomass, as a renewable and sustainable energy resource, can be converted into environmentally friendly and practically valuable biofuels and chemical materials via pyrolysis. However, the process optimization and pyrolysis efficiency are restricted by the limited perception of the complicated mechanisms and kinetics for biomass pyrolysis. Here, to establish an in-depth mechanism model for biomass pyrolysis, we presented a novel investigation for the thermal evolutions and pyrolysis kinetics of the function...
Bio-fuel production from microalgae
Onay, Melih; Yücel, A Meral; Öktem, Hüseyin Avni; Department of Biochemistry (2015)
Bio-fuel is a renewable fuel and it includes different biofuel energy sources such as methane, bioethanol and biodiesel. Generally, biodiesel is produced from agricultural waste, vegetable oils such as soybean and palm oil. Third generation biofuels called as microalgae have been appeared nowadays. In the current study, biodiesel production from thermo-resistant green microalgae was focused on. For this aim, microalgae were sampled from a few hotspring points in Haymana and isolated. Identification and char...
Hyperthermophilic hydrogen production from wastewater biosolids by Caldicellulosiruptor bescii
Yılmazel Tokel, Yasemin Dilşad; Duran, Metin (Elsevier BV, 2015-09-28)
Wastewater biosolids are abundant renewable resources that are rich in organic matter and offer a low cost potential feedstock for biohydrogen production. Relevant literature indicates that biosolids conversion rates are relatively low and therefore this option is not considered feasible. This study showed that hyperthermophilic bacteria Caldicellulosiruptor bescii could efficiently utilize biosolids as the sole carbon source and produce hydrogen (H-2) for the first time in the literature. Degradability ass...
Citation Formats
H. Koku, “Energy, Hydrogen and Biohydrogen: Perspectives, Examples and Outlook,” presented at the 4 International Symposium on Advanced Materials and Nanotechnology 2020, Shah-Alam, Malezya, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94370.