Time-resolved microscopy of femtosecond laser filaments in fused quartz

2022-02-01
Kadan, Viktor
Blonskyi, Ivan
Pavlov, Ihor
Detailed picture of continuous shape evolution of femtosecond laser pulse has been recorded directly in the process of filament formation in fused silica using time-resolved polarization microscopy with similar to 70 fs temporal resolution. The main stages of the pulse transformation (temporal self-compression and splitting, formation of conical wave) have been studied. The maximum temporal compression has been found to be achieved by the leading subpulse after the time splitting event. It was found that the Bessel zone of conical wave formation is shifted backwards from the pulse front. Sub-and superluminal propagation velocities of the pulse maxima after the time splitting have been measured.
OPTICS COMMUNICATIONS

Suggestions

Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption
Blonskyi, Ivan; Kadan, Viktor; Shpotyuk, Oleh; Iovu, Mihail; Pavlov, Ihor (2010-09-01)
Filamentation of 800 nm femtosecond laser pulses in the conditions of strong two-photon absorption was first directly observed in As4Ge30S66 chalcogenide glass, this effect being accompanied by increase in the pulse spectrum width from 8.5 to 11 nm and its modulation indicating the pulse temporal splitting. In contrast, there was no filamentation and pulse spectrum widening in stoichiometric As2S3 glass. The nonlinear figure of merit was shown to be as high as 0.5 and only similar to 0.1 in glassy As4Ge30S6...
Quantitative atom-resolved force gradient imaging using noncontact atomic force microscopy
Oral, Ahmet; ÖZER, HAKAN ÖZGÜR; HOFFMANN, PM; PETHICA, JB (2001-09-17)
Quantitative force gradient images are obtained using a sub-angstrom amplitude, off-resonance lever oscillation method during scanning tunneling microscopy imaging. We report the direct observation of short-range bonds, and the measured short-range force interaction agrees well in magnitude and length scale with theoretical predictions for single bonds. Atomic resolution is shown to be associated with the presence of a prominent short-range contribution to the total force interaction. It is shown that the b...
Image formation model for photon sieves
Öktem, Sevinç Figen; Kamalabadi, Farzad (2013-09-15)
A photon sieve, modification of a Fresnel zone plate, has been recently proposed to achieve higher resolution imaging and spectroscopy at UV and x-ray wavelengths. In this paper, we present Fresnel imaging formulas that relate the output of a photon sieve imaging system to its input, originating from either a coherent or incoherent extended source. By using a well-known model for the zone plate, we also provide approximations to these imaging formulas, which are more efficient to compute. These imaging rela...
Electrical impedance tomography using the magnetic field generated by injected currents
Birgul, O; Ider, YZ (1996-11-03)
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savar...
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
Citation Formats
V. Kadan, I. Blonskyi, and I. Pavlov, “Time-resolved microscopy of femtosecond laser filaments in fused quartz,” OPTICS COMMUNICATIONS, vol. 505, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/95147.