Modelling and Control of 3D Flapping Flight

2022-2
Çalış, Özgün
This thesis presents aerodynamic modelling, dynamical modelling and control studies on a flapping-wing micro air vehicle flight. The wing morphology and kinematics of nature flyers are investigated, and an aerodynamic model is created based on quasi-steady estimations and blade element theory. The model in question calculates the aerodynamic forces and pitching moment created by the flapping motion in a much shorter time than the alternating techniques, making it usable during control simulations. This model is used for realizing different flapping-wing micro air vehicles control simulations. The employability of the linear control methods such as linear quadratic regulator, and the coefficient diagram method, are tested in 2D longitudinal flight considering ideal actuator models. The 3D flight is controlled with active disturbance rejection controller by including realistic motor models and uncertainties at the wing model. Central pattern generators, biological neural networks responsible for generating rhythmic motions, are studied to achieve a bio-inspired control. A central pattern generator model is implemented into an active disturbance rejection controller based controller, bringing agility to the future bioinspired flapping-wing micro air vehicles during obstacle and danger avoidance.

Suggestions

Modelling of an articulated flying body and control system design
Güzelcan, Burçin Tutku; Yazıcıoğlu, Yiğit; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2022-12-5)
This study presents the conceptual design of an articulated coaxial rotor Unmanned Air Vehicle (UAV) with three-dimensional dynamical models and a control strategy. Conventional rotary-wing aircrafts operate maneuvers via swashplates which is a complex mechanism adding bulky elements to the aircrafts. While designing light weight UAVs, there appears a need for less complex and compact mechanisms for maneuverability rather than swashplates. There are different methods and mechanisms to acquire maneuvering wi...
COMPARATIVE STRUCTURAL OPTIMIZATION STUDY OF COMPOSITE AND ALUMINUM HORIZONTAL TAIL PLANE OF A HELICOPTER
Arpacıoğlu, Bertan; Kayran, Altan (2019-11-11)
This work presents structural optimization studies of aluminum and composite material horizontal tail plane of a helicopter by using MSC. NASTRAN SOL200 optimization capabilities. Structural design process starts from conceptual design phase, and structural layout design is performed by using CATIA. In the preliminary design phase, study focuses on the minimum weight optimization with multiple design variables and similar constraints for both materials. Aerodynamic load calculation is performed using ANSYS ...
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Modeling and controller design of a VTOL air vehicle
Önen, Anıl Sami; Tekinalp, Ozan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2015)
This thesis focuses on modeling, controller design, production and flight test of a VTOL unmanned air vehicle. The air vehicle that is designed and manufactured for this study has three propellers. A nonlinear mathematical model of the aircraft is developed. For this both numerical codes as well as wind tunnel tests have been carried out. A simulation code is then written in MATLAB/Simulink environment that describes the physical properties of the system in detail. After trimming the air vehicle at appropri...
Mathematical Modeling of the NOTAR Antitorque System for Flight Simulation
Yavrucuk, İlkay; Uzol, Oğuz (2013-04-01)
In this paper, a mathematical model of a helicopter NO TAil Rotor (NOTAR) antitorque system is developed for real-time flight simulations. The model consists of the circulation control tail boom, direct jet thruster, and the vertical stabilizers. The airflow inside the tail boom is modeled by dividing the flow into aerodynamic control volumes. The model features a bladeelement-type approach for modeling the mass flow through the axial fan blades as well as aerodynamic mass and momentum conservation calculat...
Citation Formats
Ö. Çalış, “Modelling and Control of 3D Flapping Flight,” M.S. - Master of Science, Middle East Technical University, 2022.