Modeling and controller design of a VTOL air vehicle

Download
2015
Önen, Anıl Sami
This thesis focuses on modeling, controller design, production and flight test of a VTOL unmanned air vehicle. The air vehicle that is designed and manufactured for this study has three propellers. A nonlinear mathematical model of the aircraft is developed. For this both numerical codes as well as wind tunnel tests have been carried out. A simulation code is then written in MATLAB/Simulink environment that describes the physical properties of the system in detail. After trimming the air vehicle at appropriate equilibrium points in hover and forward flight phase separately, the nonlinear model is linearized around that trim points and Linear Quadratic Regulator (LQR) and Linear Quadratic Tracking (LQT) controllers are designed. After verifying both controllers through the nonlinear simulation, hover flight tests of the aircraft are also successfully carried out and results are reported.

Suggestions

Design and analysis of a VTOL Tilt-Wing UAV
Çakır, Hasan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2020)
In this study, the design and analysis of a UAV, which is capable of vertical take-off and landing using fixed six rotors placed on the tilt-wing and tilt-tail, will be explained. The aircraft has four rotors on its wing and two rotors on its tail. The main wing and horizontal tail are capable of 90° tilting. Both aerodynamic and thrust forces are used during VTOL, transition, and forward flight. Aerodynamic analysis has been performed in ANSYS Fluent v.18. A non-linear six DoF model, involving a 3D CAD mod...
Design, modeling and control of a hybrid UAV
Muratoğlu, Abdurrahim; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
Vertical takeoff and landing (VTOL) vehicles that can fly like conventional airplanes after the takeoff, provide a promising area to find applications in the future. These hybrid vehicles combine the advantages of rotary-wing and fixed-wing aircraft configurations such as having capability of hovering flight, takeoff and landing without utilizing a runway, long range, high speed flight with reasonable endurance. In this study, a tilt-rotor tricopter VTOL UAV having a conventional fixed-wing airframe is desi...
Control system design and implementation of a tilt rotor UAV
Cevher, Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 ...
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Modeling and Controller Design of a VTOL UAV
Onen, Anil Sami; Cevher, Levent; Şenipek, Murat; Mutlu, Talha; Gungor, Osman; Uzunlar, Ismail Ozdemir; Kurtuluş, Dilek Funda; Tekinalp, Ozan (2015-06-12)
A tilt rotor VTOL UAV in tri-copter configuration is developed. The vehicle is modeled using the blade element formulation for the propulsion system, and the aerodynamic properties are obtained from a 3D panel code. Linear quadratic regulators and linear quadratic tracking controllers are designed for the attitude control of the aircraft in vertical takeoff and hover flight conditions. The vehicle is built and hover flight tests are carried out. The results demonstrate the success of the modeling carried ou...
Citation Formats
A. S. Önen, “Modeling and controller design of a VTOL air vehicle,” M.S. - Master of Science, Middle East Technical University, 2015.