Ductile failure prediction during the flow forming process

2021-01-01
Vural, Hande
Erdoğan, Can
Fenercioglu, Tevfik Ozan
Yalçınkaya, Tuncay
Flow forming is an incremental metal-forming technique used for manufacturing thin-walled seamless tubes where a hollow metal material flows axially along the mandrel by a rotating mandrel and multiple cylinders. Flow formed materials are frequently used in the aviation and defence industry and it is crucial to examine the influence of the process on the material in terms of ductile fracture. However, the process requires in-depth failure analysis considering different process parameters and materials. The current study is concerned with investigating the ductile fracture behavior during flow forming process which includes complex stress states in terms of stress triaxiality and Lode parameter. Ductile fracture is simulated through the modified Mohr-Coulomb model. A user material subroutine (VUMAT) has been developed to implement the plasticity behavior and the damage accumulation rule. The model is validated through finite element (FE) simulations performed in Abaqus/Explicit and using the experimental data in Granum et al. (2021). The validated framework is applied to a finite element model of flow forming process with single and three rollers. The incremental forming with three rollers significantly reduces the damage accumulation. The initial results show a highly damaged region outer and inner surfaces of the workpiece after 40% thickness reduction ratio, and the forming limit is predicted as about 40-45%. The modeling framework is planned to be applied using various process parameter for different materials.
2nd International Workshop on Plasticity, Damage and Fracture of Engineering Materials, IWPDF 2021

Suggestions

Numerical analysis of thermo-mechanical behavior in flow forming
Günay, Enes; Fenercioglu, Tevfik Ozan; Yalçınkaya, Tuncay (2021-01-01)
Flow forming is a metal forming process for cylindrical workpieces where high velocity deformation leads to radial thinning and axial extension. In the current study, a thermomechanical, dynamic and explicit finite element model of a flow forming process is developed on ABAQUS software. The model is validated through the comparison of reaction forces and geometry obtained from the experiments. Coolant convection effect is analyzed in conjunction with roller and mandrel conduction cooling to study the therma...
Flow correction control with electromagnetically induced preform resting process
Poorzeinolabedin, Mohsen; Parnas, Kemal Levend (Springer Science and Business Media LLC, 2019-06-01)
Resin flow correction control with electromagnetic field source, a new variation of the vacuum-assisted resin transfer molding (VARTM) process called electromagnetically induced preform resting (EIPR) for dynamical resin flow controlling is introduced to manipulate the flow front and local permeability to prevent the formation of dry spots. This paper proposes an active and real-time flow control approach that is implemented during the composite laminate infusion. The EIPR process applies an electromagnetic...
Modeling of particle-resin suspension impregnation in compression resin transfer molding of particle-filled, continuous fiber reinforced composites
Sas, Hatice Sinem; Erdal Erdoğmuş, Merve (Springer Science and Business Media LLC, 2014-03-01)
A particle-resin suspension impregnation model is used for analyzing the mold filling process in compression resin transfer molding (CRTM) of particle-filled, continuous fiber composites. The model is based on Darcy flow coupled with particle filtration and is applicable to two-dimensional impregnation through isotropic/anisotropic fiber preforms. Comparisons with simple analytical solutions and experimental results from the literature were made to validate the numerical solution. Simulations showed that CR...
Solid phase epitaxial thickening of boron and phosphorus doped polycrystalline silicon thin films formed by aluminium induced crystallization technique on glass substrate
Ozmen, O. Tuzun; Karaman, M.; Sedani, S. H.; Sagban, H. M.; Turan, Raşit (Elsevier BV, 2019-11-01)
Aluminium induced crystallization (AIC) technique can be used to form the high-quality and large-grained polycrystalline silicon (poly-Si) thin films, which are with the thickness of similar to 200 nm and used as a seed layer, on silicon nitride coated glass substrate. Thanks to aluminium metal in AIC process, the natural doping of AIC thin films is p(+) type (similar to 2 x 10(18) cm(-3)). On the other hand, recombination of carriers can be controlled by partial doping through the defects that may have adv...
Mechanical properties and surface energies of low density polyethylene poly(vinyl chloride) blends
Akovali, G; Torun, TT; Bayramlı, Erdal; Erinc, HK (1998-03-01)
A series of blends of poly(vinyl chloride) (PVC) and low density polyethylene (LDPE) are prepared and examined. Plasma treatment is applied to one of the components (LDPE) in order to affect the degree of compatibility. For this purpose, different monomers, such as carbon tetrachloride and vinyl chloride, are used. Tensile test results for all the blend samples, with and without plasma-treated LDPE, are compared. The surface energy results of blends prepared from untreated and treated LDPE-PVC showed consid...
Citation Formats
H. Vural, C. Erdoğan, T. O. Fenercioglu, and T. Yalçınkaya, “Ductile failure prediction during the flow forming process,” Ankara, Türkiye, 2021, vol. 35, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124374205&origin=inward.