Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental and Finite Element Analysis of Rotary Draw Tube Bending Process
Date
2013-06-23
Author
Dere, Fatih
Darendeliler, Haluk
İDER, SITKI KEMAL
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
65
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/97050
Conference Name
7th International Conference and Exhibition on Design and Production of Machines and Dies/Molds
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Experimental and finite element analysis of rotary draw tube bending process
Dere, Fatih; Darendeliler, Haluk; İder, Kemal; Department of Mechanical Engineering (2014)
Rotary draw bending, which has very good flexibility and easy tooling, is one of the most preferred bending types for tubular profiles. Cross-section distortion and the spring-back phenomena are commonly faced problems in bending processes. Spring-back is the inevitable problem that is to be solved by manufacturer, generally by overbending. For hollow tubes cross-section distortion is another difficulty since using hollow tubes results in higher strain rates and distortions. During the process the thickness...
Experimental and numerical study of process-induced total spring-in of corner-shaped composite parts
Cicek, K. Furkan; Erdal Erdoğmuş, Merve; Kayran, Altan (2017-07-01)
Process-induced total spring-in of corner-shaped composite parts manufactured via autoclave-forming technique using unidirectional prepreg is studied both numerically and experimentally. In the numerical study, a three-dimensional finite element model which takes into account the cure shrinkage of the resin, anisotropic material properties of the composite part and the tool-part interaction is developed. The outcome of the numerical model is verified experimentally. For this purpose, U-shaped composite part...
Experimental and three dimensional numerical analysis of cylindrical solar cooling adsorbent beds with circular heat exchange coils
Gözükara, Arif Cem; Yamalı, Cemil; Department of Mechanical Engineering (2016)
In this study three dimensional cylindrical adsorbent bed designs with circular heat transfer fluid paths had been investigated numerically and experimentally. Three dimensional high fidelity numerical coupled heat and mass transfer analyses of the proposed design alternatives are performed. Numerical analysis results are compared with the results of experiments using the temperature distributions within the adsorbent bed. In addition to geometric design features, effects of initial adsorption capacity, hea...
Experimental and analytical analysis of in situ combustion processes
Aybak, Tuğrul; Bağcı, Ali Suat; Department of Petroleum Engineering (1992)
Experimental and computational investigation of hydrokinetic turbine
Güneş, Anıl; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2022-8)
The answer to the increasing amount of energy consumption, mostly in carbon-based energy sources can be found in water and through the wind. The investigation of a special drag-based cross-flow hydrokinetic turbine (referred to as a Vertical Axis Wind Turbine for wind energy applications) called Savonius, is the main purpose of this study. Both experimentally and computationally studying this high self-starting ability turbine will open up the way to small-size energy production with very small water and wi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Dere, H. Darendeliler, and S. K. İDER, “Experimental and Finite Element Analysis of Rotary Draw Tube Bending Process,” presented at the 7th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, Antalya, Türkiye, 2013, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97050.