Dual-band InGaAs nBn photodetectors at 2 mu m

2022-02-01
An nBn type InGaAs photodetector structure operating at 2 mu m with dual-band operation capability has been numerically designed and experimentally characterized. A compositionally graded and unintentionally doped InGaAlAs layer with a delta-doped nano-layer behaves as the barrier for majority carrier flow. The pixels fabricated with a 20 mu m pitch mesa process yielded peak quantum efficiencies of 67% and 53% without anti-reflective coating for the e-SWIR and SWIR sides, respectively. Dark current measurements on a large area pixel yield 3.40 mA/cm(2) at 300 K and 0.61 mu A/cm(2) at 200 K for the e-SWIR side, while 8.05 mu A/cm(2) at 300 K and 1.09 nA/cm(2) at 200 K are obtained for the SWIR side. I-V characteristics analysis performed with pixels having different areas shows that the designed nBn structure has no surface leakage current presenting a potential benefit for dual-band applications requiring mesa structures that usually suffer from surface states for the InGaAs material system. Temperature dependent dark current characterization confirms this result and implies diffusion current dominated dark current.
APPLIED PHYSICS LETTERS

Suggestions

Fully Integrated Autonomous Interface With Maximum Power Point Tracking for Energy Harvesting TEGs With High Power Capacity
Tabrizi, Hamed Osouli; Jayaweera, Herath M. P. C.; Muhtaroglu, Ali (Institute of Electrical and Electronics Engineers (IEEE), 2020-05-01)
In this article, a novel fully autonomous and integrated power management interface circuit is introduced for energy harvesting using thermoelectric generators (TEGs) to supply power to Internet of Thing nodes. The circuit consists of a self-starting dc & x2013;dc converter based on a dual-phase charge pump with LC-tank oscillator, a digital MPPT unit, and a 1-V LDO regulator. The novel maximum power point tracking (MPPT) algorithm avoids open-circuit state, and accommodates varying input power and ultra-lo...
Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV
Khachatryan, V.; et. al. (2010-07-01)
Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(...
Evaluation of Sparsity-based Methods for Parameterized Source Separation
Baskaya, Hasan Can; Öktem, Sevinç Figen (2020-10-07)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Sparsity-based methods used in compressive sensing are also applied to parametric recovery problems. These methods discretize the parameter space to form a dictionary whose atoms correspond to candidate parameter values, represent the data ...
Empirical Proof of Concept for TE Generation in Mobile Computers
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
Thermoelectric (TE) module integration into a mobile computer has been experimentally investigated in this paper for its energy harvesting opportunities. For this purpose, a detailed Finite Element Analysis (FEA) model was constructed for thermal simulations. The model outputs were then correlated with the thermal validation results of the target system. A suitable "warm spot" has been selected, based on the FEA model, to integrate a commercial TE micro-module inside the system with minimum or no notable im...
Circumferential Traveling Wave Slot Array on Cylindrical Substrate Integrated Waveguide (CSIW)
Bayraktar, Omer; Aydın Çivi, Hatice Özlem (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
Traveling wave slot array on cylindrical substrate integrated waveguide (CSIW) is designed, fabricated and measured at K-band. CSIW is formed by wrapping the substrate integrated waveguide (SIW) around the cylinder in the circumferential direction. 16 element longitudinal slot array on the broad wall of single CSIW is designed by the Elliot's design procedure. The spacings between the slot elements are determined to reduce the half power beam width (HPBW) and to obtain good matching at 25 GHz. A 4 x 16 slot...
Citation Formats
A. Şahin, M. S. Gül, F. Uzgur, and S. Kocaman, “Dual-band InGaAs nBn photodetectors at 2 mu m,” APPLIED PHYSICS LETTERS, vol. 120, no. 9, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97091.