Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation
Download
index.pdf
Date
2022-03-01
Author
Pathni, Aashli
Özçelikkale, Altuğ
Rey-Suarez, Ivan
Li, Lei
Davis, Scott
Rogers, Nate
Xiao, Zhengguo
Upadhyaya, Arpita
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
129
downloads
Cite This
Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.
Subject Keywords
CD8+cytotoxic T lymphocyte
,
cytoskeleton
,
traction force
,
IL-12 cytokine
,
actin
,
microtubule
,
lytic granule
,
myosin
,
CELL-RECEPTOR
,
CUTTING EDGE
,
CENTROSOME POLARIZATION
,
ACTIN POLYMERIZATION
,
GRANULE SECRETION
,
SYNAPSE FORMATION
,
EFFECTOR FUNCTION
,
CLONAL EXPANSION
,
II PRESENTATION
,
CORTICAL ACTIN
URI
https://hdl.handle.net/11511/97286
Journal
FRONTIERS IN IMMUNOLOGY
DOI
https://doi.org/10.3389/fimmu.2022.779888
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection.
Verthelyi, D; Gürsel, Mayda; Kenney, RT; Lifson, JD; Liu, S; Mican, J; Klinman, DM (The American Association of Immunologists, 2003-05-01)
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) mimic microbial DNA and activate effectors of the innate immune response, which limits the spread of pathogens and promotes an adaptive immune response. CpG ODNs have been shown to protect mice from infection with intracellular pathogens. Unfortunately, CpG motifs that optimally stimulate humans are only weakly active in mice, mandating the use of nonhuman primates to monitor the activity and safety of "human" CpG ODNs in vivo. This study demonstrates t...
Plasmacytoid Dendritic Cell Response to CpG ODN Correlates with CXCL16 Expression and Is Inhibited by ox-LDL
Gürsel, Mayda; GÜRSEL, İHSAN (Hindawi Limited, 2013-01-01)
Structurally distinct classes of synthetic CpG oligonucleotides (ODN) differentially activate human immune cells. K-type ODN trigger plasmacytoid dendritic cells (pDCs) to differentiate and produce TNF alpha. In contrast, D-type ODN stimulate large amounts of IFN alpha secretion from pDCs. The cell-surface receptor CXCL16 was previously shown to influence the nature and specificity of CpG ODN-induced immune activation. Here, we evaluated the expression and function of CXCL16 on pDC from healthy volunteers. ...
Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes.
Erikçi, E; Gürsel, Mayda; Gürsel, I (2011-02-01)
The immunogenicity of a vaccine formulation is closely related to the effective internalization by the innate immune cells that provide prolonged and simultaneous delivery of antigen and adjuvant to relevant antigen presenting cells. Endosome associated TLR9 recognizes microbial unmethylated CpG DNA. Clinical applications of TLR9 ligands are significantly hampered due to their pre-mature in vivo digestion and rapid clearance. Liposome encapsulation is a powerful tool to increase in vivo stability as well as...
CpG DNA: recognition by and activation of monocytes.
Klinman, DM; Takeshita, F; Gursel, I; Leifer, C; Ishii, KJ; Verthelyi, D; Gürsel, Mayda (2002-07-01)
Unmethylated CpG motifs present in bacterial DNA rapidly trigger an innate immune response characterized by the activation of Ig- and cytokine-secreting cells. Synthetic oligonucleotides (ODNs) containing CpG motifs mimic this activity, triggering monocytes to proliferate, secrete and/or differentiate. Analysis of hundreds of novel ODNs led to the identification of two structurally distinct classes of CpG motif that differentially activate human monocytes. ODNs of the "K"-type interact with Toll-like recept...
Cutting edge: Role of toll-like receptor 9 in CpG DNA-induced activation of human cells
Takeshita, F; Leifer, CA; Gursel, I; Ishii, KJ; Takeshita, S; Gürsel, Mayda; Klinman, DM (The American Association of Immunologists, 2001-10-01)
Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Pathni et al., “Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation,”
FRONTIERS IN IMMUNOLOGY
, vol. 13, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97286.