Hydrogen energy systems for underwater applications

2022-01-01
Sezgin, Berna
Devrim, Yilser
Öztürk, Tayfur
Eroglu, Inci
© 2022 Hydrogen Energy Publications LLCThe most critical development in conventional underwater applications in recent years is to use hydrogen energy systems, including Air Independent Propulsion (AIP) systems. Proton Exchange Membrane (PEM) fuel cell-powered AIP systems increase interest worldwide. They offer many advantages such as longer endurance time without going to the surface for 2–3 weeks or without snorkeling with an average speed, perfectly silent operation, environmentally friendly process, high efficiency, and low thermal dissipation underwater. PEM fuel cells require a continuous source of hydrogen and oxygen as reactants to sustain a chemical reaction to produce electrical energy. Hydrogen storage is the critical challenge regarding the quality of supplied hydrogen, system weight, and volume. This paper reviewed hydrogen/oxygen storage preferences coupled with PEM Fuel Cell applications in the literature for unmanned underwater vehicles. Since underwater vehicles have different volume and weight requirements, no single hydrogen storage technique is the best for all underwater applications.
International Journal of Hydrogen Energy

Suggestions

MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS
Ekiz, Ahmet; Camci, Talha; Turkmen, Ibrahim; SANKIR, MEHMET; USLU, SITKI; Baker, Derek Keıth; Agar, Ertan (2011-09-01)
Fuel cell technology is one of the most economic and efficient ways to utilize hydrogen energy. Various types of fuel cells are present regarding the fuel type and amount of power produced. Among these, proton exchange membrane fuel cells (PEMFCs) are very promising. In this work, a 2D proton exchange membrane fuel cell unit cell was modeled using Comsol Multiphysics software. Cell section was taken parallel to flow direction. Obstacles with various geometries were placed in the flow channel in order to for...
Development of solid sodium borohydride hydrogen gas generator for portable pem fuel cell applications
Boran, Aslı; Eroğlu, İnci; Department of Chemical Engineering (2018)
Hydrogen is considered as a promising candidate to replace fossil fuels. For implementing a hydrogen based infrastructure, hydrogen storage is the mainobstacle that is needed to be overcome. Being boron based compound, sodium borohydride, NaBH4, is a convenient hydrogen storage material for applications like unmanned air vehicles. There are several issues behind commercialization of NaBH4 hydrolysis systems. This doctorate thesis aims to be solution of NaBH4 hydrolysis system by highlighting three main cont...
Hydrogen production from ethanol over mesoporous alumina based catalysts and microwave reactor applications
Gündüz, Seval; Doğu, Timur; Department of Chemical Engineering (2014)
Due to fast depletion of fossil fuel resources and related environmental impact of CO2 emissions, the interest in hydrogen as a clean energy carrier has recently increased. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming process, has shown excellent potential with CO2 neutrality and renewability. Steam reforming of ethanol (SRE) process has a highly complex reaction network including numerous side reactions which decrease hydrogen yield and have a negat...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Hydrogen production by different strains of Rhodobacter sphaeroides
Gündüz, Ufuk; Yucel, M; Turker, L; Eroglu, L (2000-06-15)
Utilisation of solar energy by photosynthetic microorganisms for H-2 production attracts much interest due to unlimited supply of energy. It is important to identify the most effective strain in terms of hydrogen production for the feasibility of the process. Four different strains of Rhodobacter sp. were grown in a water-jacketed cylindrical glass-column photobioreactor under anaerobic conditions. Growth characteristics and hydrogen production rates were determined. Comparison between strains of Rhodobacte...
Citation Formats
B. Sezgin, Y. Devrim, T. Öztürk, and I. Eroglu, “Hydrogen energy systems for underwater applications,” International Journal of Hydrogen Energy, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125116586&origin=inward.