Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Freshwater salinisation: a research agenda for a saltier world
Date
2022-05-01
Author
Cunillera-Montcusí, David
Beklioğlu, Meryem
Cañedo-Argüelles, Miguel
Jeppesen, Erik
Ptacnik, Robert
Amorim, Cihelio A.
Arnott, Shelley E.
Berger, Stella A.
Brucet, Sandra
Dugan, Hilary A.
Gerhard, Miriam
Horváth, Zsófia
Langenheder, Silke
Nejstgaard, Jens C.
Reinikainen, Marko
Striebel, Maren
Urrutia-Cordero, Pablo
Vad, Csaba F.
Zadereev, Egor
Matias, Miguel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
© 2021 The AuthorsThe widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.
Subject Keywords
freshwater salinisation syndrome
,
global change
,
salt
,
secondary salinisation
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122923273&origin=inward
https://hdl.handle.net/11511/97670
Journal
Trends in Ecology and Evolution
DOI
https://doi.org/10.1016/j.tree.2021.12.005
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Adaptive strategies to mitigate the impacts of climate change on European freshwater ecosystems (REFRESH)
Beklioğlu, Meryem(2014-1-31)
Understanding how freshwater ecosystems will respond to future climate change is essential for the development of policies and implementation strategies needed to protect aquatic and riparian ecosystems. The future status of freshwater ecosystems is however, also dependent on changes in land-use, pollution loading and water demand. In addition the measures that need to be taken to restore freshwater ecosystems to good ecological health or to sustain priority species as required by EU Directives need to be d...
Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes
Jeppesen, Erik; Meerhoff, Mariana; Davidson, Thomas A.; Trolle, Dennis; Sondergaard, Martin; Lauridsen, Torben L.; Beklioğlu, Meryem; Brucet, Sandra; Volta, Pietro; Gonzalez-Bergonzoni, Ivan; Nielsen, Anders (PAGEPress Publications, 2014-01-01)
Freshwater ecosystems and their biodiversity are presently seriously threatened by global development and population growth, leading to increases in nutrient inputs and intensification of eutrophication-induced problems in receiving fresh waters, particularly in lakes. Climate change constitutes another threat exacerbating the symptoms of eutrophication and species migration and loss. Unequivocal evidence of climate change impacts is still highly fragmented despite the intensive research, in part due to the...
Challenges and opportunities in the use of ponds and pondscapes as Nature-based Solutions
Cuenca-Cambronero, M.; et. al. (2023-1-01)
Ponds and “pondscapes” (networks of ponds) are crucial habitats for biodiversity and for delivering multiple benefits to humans, so-called “Nature’s Contribution to People”, such as climate mitigation and adaptation to climate change, creation, and maintenance of habitat for biodiversity, water purification, flood mitigation and cultural benefits (e.g., recreational possibilities). However, ponds are not often considered as Nature-based Solutions to provide all these benefits. In addition, there is insuffic...
End-To-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps
Rose, Kenneth A.; et. al. (2010-01-01)
There is growing interest in models of marine ecosystems that deal with the effects of climate change through the higher trophic levels. Such end-to-end models combine physicochemical oceanographic descriptors and organisms ranging from microbes to higher-trophic-level (HTL) organisms, including humans, in a single modeling framework. The demand for such approaches arises from the need for quantitative tools for ecosystem-based management, particularly models that can deal with bottom-up and top-down contro...
Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins
MANTZOUKİ, Evanthia; et. al. (2018-10-23)
Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consis...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Cunillera-Montcusí et al., “Freshwater salinisation: a research agenda for a saltier world,”
Trends in Ecology and Evolution
, vol. 37, no. 5, pp. 440–453, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122923273&origin=inward.