Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles

Farhadi, Khalil
Forough, Mehrdad
Molaei, Rahim
Hajizadeh, Salahaddin
Rafipour, Aysan
The reaction between biologically green synthesized silver nanoparticles (Ag NPs) and mercury (II) ions was introduced as a new and high potential calorimetric sensor for the selective recognition and monitoring of mercuric ions in aqueous samples. The green synthesized silver nanoparticles were characterized with surface plasmon resonance (SPR) ultraviolet spectroscopy (UV-vis), SEM and X-ray diffraction analysis (XRD) techniques. The fresh biologically synthesized silver nanoparticles are yellowish-brown in color due to the intense SPR absorption band. In the presence of Hg2+, the yellow Ag NPs solution was turned to colorless, accompanying the broadening and blue shifting of SPR band. The sensitivity and selectivity of green prepared Ag NPs toward other representative transition-metal ions, alkali metal ions and alkaline earth metal ions were studied. Also the effect of the concentration of Hg2+ to the Ag NPs was considered and the LOD for mercury (II) ion was 2.2 x 10(-6) mol L-1. The proposed method has been successfully used for the determination of mercury (II) ions in various water samples. (C) 2011 Elsevier B.V. All rights reserved.


Highly sensitive and selective colorimetric probe for determination of L-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles
Farhadi, Khalil; Forough, Mehrdad; Pourhossein, Atefeh; Molaei, Rahim (2014-10-01)
The interaction between Ag/Pd bimetallic nanoparticles and cysteine was introduced as a new and high potential colorimetric probe for the selective, sensitive and low-cost recognition and monitoring of cysteine in aqueous samples. In the presence of NaCl, cysteine was able to induce the aggregation of Ag/Pd bimetallic nanoparticles thereby resulting in a change in yellowish-brown color of the Ag/Pd colloid to green. The presence of 6.6 mM NaCl in the samples decreases the electrostatic repulsion and acceler...
Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection
Kasap, Berna Ozansoy; Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Akata Kurç, Burcu (2017-03-02)
The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta...
Optical fluoride sensing with a bay region functionalized perylenediimide dye
Yukruk, Funda (2006-01-01)
A perylenedimiide (PDI) derivative functionalized at the perylene core (bay region) to carry phenyl boronic acid groups was shown to interact with fluoride with changes in the emission and absorption spectrum. These changes are most likely due to fluoride-induced aggregation and/or quenching of the perylenediimide dye. The dye is also selective; among halide ions, fluoride anions generate a significant response. Thus, this class of PDI derivatives is likely to be useful in practical fluoride sensing.
Multicomponent ion exchange on zeolite 4A
Kadaifci, Bijen; Yücel, Hayrettin; Department of Chemical Engineering (2011)
In this study binary and ternary ion exchange on Zeolite NaA using silver and cadmium ions were investigated. Ion exchange were conducted at constant temperature (25oC) and normality (0.1N) in a batch system for both binary and ternary experiments. Zeolite weights were varied between 0.1 and 1 g for binary experiments. Thermodynamic analysis of binary ion exchange between Cd2+-Na+ and Ag+-Na+ were examined and thermodynamic equilibrium constant and Gibbs free energy were calculated. Thermodynamic equilibriu...
Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials
Wolowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, Raşit; Yerci, Selçuk (2008-01-01)
This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP 'SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 mu m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of 'time-of-flight' io...
Citation Formats
K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour, “Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles,” SENSORS AND ACTUATORS B-CHEMICAL, pp. 880–885, 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90453.