Insights into the synthesis and application of biochar assisted graphene-based materials in antibiotic remediation

2022-08-10
Ashraf, Aniqa
Liu, Guijian
Arif, Muhammad
Mian, Md Manik
Rashid, Audil
Yousaf, Balal
Khawar, Muhammad Irfan
Riaz, Luqman
Safeer, Rabia
© 2022 Elsevier LtdAn increase in antibiotic utilization worldwide has led to serious environmental problems due to their direct and indirect release into waterbodies. The addition of pharmaceutically active compounds to water results in antibiotic-resistant bacteria and genes, which create resistance to the particular antibiotic, requiring the need for a much more powerful one on the next use, trapping the world in a vicious cycle. Therefore, an urgent approach to antibiotic removal from water entities is required. At present, numerous carbonaceous materials have shown promising performance in antibiotic treatments. Among them, graphene and graphene-based nanomaterials (GNMs) are at the top of the list. Despite their promising services in antibiotic remediation, their high production cost limits their usage. This review provided an in-depth insight into low-cost graphene production sources/processes along with powerful shreds of evidence of antibiotic pollution remediation using graphene, GNMs, and their composites. Formulation of graphene biochar composite with enhanced working efficiency along with a critical assessment of graphene and graphene-based materials in antibiotic remediation was presented. While discussing all the remediation mechanisms in detail, this review will provide new research insights by converting low-cost solid waste materials into graphene; and graphene-based nano materials, opening up future possibilities of innovatively engineered complex graphene-biochar composites to tackle organic pollution on a commercial scale.
Journal of Cleaner Production

Suggestions

Investigating the effect of solids retention time on pesticides removal in an activated sludge process
Kocaman, Kumru; Yetiş, Ülkü; Dilek, Filiz Bengü (2022-10-01)
© 2022 Elsevier B.V.The levels of pesticides reaching the biological wastewater treatment plants have been increasing. Operational conditions leading to the most efficient removal of pesticides in these plants should be evaluated first before attempting tertiary-level treatment options. This study investigated the influence of solids retention times (SRTs) on the removal of three pesticides (carbendazim, imidacloprid, and aclonifen) in the activated sludge process. Laboratory-scale reactors receiving these ...
Investigation of adsorption of pesticides by organo-zeolite from wastewater
Lüle, Güzide Meltem; Atalay, M Ümit; Özbayoğlu, Gülhan; Department of Mining Engineering (2011)
The aim of this study was to determine the adsorption capacity of activated carbon and organo-zeolites for removal of pesticides in water. In order to prepare organo-zeolite, two kinds of cationic surfactants, namely, hexadecyltrimethyl ammonium bromide (HTAB) and dodecyltrimethyl ammonium bromide (DTAB) were used. Adsorption studies of cationic surfactant on zeolite were investigated in respect to initial concentration of cationic surfactant, time, and temperature. It has been found that the best fitted is...
Impact of wastewater treatment plants on dissemination of antibiotic resistance genes
Küçükünsal, Serkan; İçgen, Bülent; Department of Environmental Engineering (2019)
Wastewater treatment plants (WWTPs) as hotspots of the antibiotic resistance genes (ARGs) pose risk to receiving environments. Removal of ARGs through WWTPs, therefore, is great importance. For this reason, common types of WWTPs including conventional activated sludge (CAS), biological nutrient removal (BNR), sequencing batch reactor (SBR), membrane bioreactor (MBR), package MBR, WWTP with coagulation-flocculation and UV disinfection units were investigated in terms of their seasonal removal efficiencies on...
Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems
Ashraf, Aniqa; Liu, Guijian; Yousaf, Balal; Arif, Muhammad; Ahmed, Rafay; Irshad, Samina; Cheema, Ayesha Imtiyaz; Rashid, Audil; Gulzaman, Humaira (2021-06-01)
Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few mu g/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass...
Selective Quantification of Viable Escherichia coli Bacteria in Biosolids by Quantitative PCR with Propidium Monoazide Modification
Taskin, Bilgin; Gözen, Ayşe Gül; Duran, Metin (American Society for Microbiology, 2011-07-01)
Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and pr...
Citation Formats
A. Ashraf et al., “Insights into the synthesis and application of biochar assisted graphene-based materials in antibiotic remediation,” Journal of Cleaner Production, vol. 361, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130566321&origin=inward.