DEVELOPMENT AND CHARACTERIZATION OF SULFIDE BASED ACTIVE MATERIALS FOR ELECTROCHEMICAL APPLICATIONS

2022-6-20
SAVAŞ UYGUR, CANSU
Next-generation electrochemical applications have faced a challenge to be improved in terms of performance with the increasing demand for new technologies. Although oxide-based active materials are widely used material groups in the electrochemical applications, including batteries, electrolyzers, capacitors and electrochemical catalysis, research in nitride/ phosphide/ boride/ sulfide-based active materials are increasing trend topic to overcome the shortcomings of the metal oxide groups. Sulfide-based active materials show remarkable capacitive and electrocatalytic behavior, which has the potential to be replaced with their commercial counterparts. However, the reaction mechanism behind the capacitive and electrocatalytic performance of certain parts of this group either has not been understood completely or even studied/published. In this study, sulfide-based active materials and/or their composites were synthesized and compounds that were not reported in the literature before were used to improve the electrochemical behavior, including reaction mechanisms and performance. Structural and morphological characterization of synthesized active materials was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and particle size analysis (PSA). Energy dispersive spectroscopy (EDS) and Rietveld analysis were used for the chemical analysis. Electrochemical characterization was performed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current/voltage tests focusing on the capacitive and electrocatalytic performance of the active materials.

Suggestions

Computational Design and Analysis of Efficient Couplers for Nano-optical Links
Altinoklu, A.; Ergül, Özgür Salih (2019-01-01)
We present rigorous optimization and design of efficient couplers to improve optical transmission along nanowires. It is well-known that nanowires are excellent tools to transmit electromagnetic power in nano-optical systems, while couplers become inevitable at critical locations, particularly in input/output regions and at corners if nanowires are bended. We use genetic algorithms supported by fast full-wave solutions to efficiently and accurately obtain effective couplers in alternative scenarios. The des...
Analysis and optimization of activated carbon coated heat sinks
Günay, Ahmet Alperen (2022-01-01)
With the enhancements in nanotechnology, electronic devices shrank in size which led to a necessity to develop efficient thermal management strategies. These small electronic devices could be thermally managed through passive systems provided that effective materials are developed. Here, we use a layer of activated carbon on top of anodized aluminum heat sinks to utilize the sorption cycle of atmospheric water to create a desorption induced evaporative cooling effect. The material properties of the activate...
Design and Development of Data-Driven Screening Tools for Enhanced Oil Recovery Processes
Yalgın, Gamze; Zarepakzad, Nida; Artun, Fazıl Emre; Durgut, İsmail; Kök, Mustafa Verşan (null; 2018-04-26)
Computationally efficient screening and forecasting tools can offer faster decision-making and value- creation opportunities for enhanced oil recovery (EOR) operations without requiring a high-fidelity reservoir model. In this paper, we present a data-driven modeling approach utilizing numerical models and neural networks (ANN) to screen EOR methods in a rapid way. Numerical modeling is employed to generate the data for the training of the neural-network based data-driven model. It is aimed to develop compr...
Prototype testing of a new passive energy dissipation device for seismic retrofit of bridges
Shaban, Nefize; Caner, Alp (2016-09-29)
© 2016 Shaban and Caner.The increasingly demanding performance requirements trigger the development of new devices to eliminate the limitations concerning the post-earthquake performance of available seismic protection systems. The prerequisite for economical earthquake-resistant bridges is the structures’ capacity to absorb and dissipate a large amount of seismic energy. A widely considered strategy for enhancing this capacity is through the use of passive energy dissipation systems for seismic protection ...
An MTD-Based Self-Adaptive Resilience Approach for Cloud Systems
VİLLARREAL VASQUEZ, Miguel; BHARGAVA, Bharat; Angın, Pelin; AHMED, Norman; GOODWİN, Daniel; BRİN, Kory; KOBES, Jason (2017-06-30)
Advances in cloud computing have made it a feasible and cost-effective solution to improve the resiliency of enterprise systems. However, the replication approach taken by cloud computing to provide resiliency leads to an increase in the number of ways an attacker can exploit or penetrate the systems. This calls for designing cloud systems that can accurately detect anomalies and dynamically adapt themselves to keep performing mission-critical functions even under attacks and failures. In this paper, we pro...
Citation Formats
C. SAVAŞ UYGUR, “DEVELOPMENT AND CHARACTERIZATION OF SULFIDE BASED ACTIVE MATERIALS FOR ELECTROCHEMICAL APPLICATIONS,” Ph.D. - Doctoral Program, Middle East Technical University, 2022.