Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Data-Driven Model Discovery and Control of Lateral-Directional Fighter Aircraft Dynamics
Download
CanOznurlu_thesis.pdf
Date
2022-8-26
Author
Öznurlu, Can
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1747
views
1015
downloads
Cite This
The focus of this thesis is to control the lateral-directional motion of the fighter aircraft by using integral action based Model Predictive Control (MPC) where the model is obtained by data-driven model discovery method. Dynamic Mode Decomposition with Control (DMDc) is used as a model discovery technique based only on measurement data with no modeling assumptions. The model created using this technique is used for MPC and tested against noisy conditions. In addition, performance comparison of MPC with Classical Controller is carried out. Finally, Speedgoat Unit Real-Time Target Machine®, which offers a real-time esting is used to verify the generated DMDc-MPC algorithm and understand the computational cost. The results show that the DMDc model discovery method performs very well in noisefree situations and meets the evaluation criteria together with MPC. However, its performance decreases in the presence of measurement noise. Finally, real-time test results on Speedgoat® equipment have shown that the generated DMDc-MPC algorithm has low computational cost and can be used in systems with low computational power.
Subject Keywords
Data-Driven Control
,
Modelling
,
System Identification
,
Model Predictive Control
,
Aircraft Dynamics
,
DMDc
URI
https://hdl.handle.net/11511/98800
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Measurements of dynamic stability derivatives using direct forced oscillation technique
Alemdaroglu, N; Iyigun, I; Altun, M; Quagliotti, F; Guglieri, G (2001-08-30)
The subject of the experimental investigation presented in this paper is to measure the dynamic stability derivatives of a generic combat aircraft model in the Ankara Wind Tunnel by using the direct forced oscillation technique. The model, used for the tests is the AGARD, Standard Dynamic Model (SDM). The aerodynamic loads acting on the model are measured with a five component internal strain gauge balance placed inside the oscillating model. The paper presents the experimental set-up used to create the osc...
Model Predictive Control for a PUC5 based Dual Output Active Rectifier
Makhamreh, Hamza; Trabelsi, Mohamed; Kukrer, Osman; Abu-Rub, Haitham (2019-01-01)
In this paper, an effective finite-control-set model predictive controller (FCS-MPC) is proposed for an active dual output rectifier. The topology under study is a 5-level packed U cells (PUC5) rectifier. The optimized cost function is designed based on the capacitors' voltages and current errors. The Capacitors' reference voltages and the peak value of the reference grid current are used to normalize the errors within the cost function. The peak value of the current reference is generated by a PI controlle...
Nonlinear modelling and control of the flow over aerofoils using CFD simulations
Karaca, H. D.; Alıcı, Gökçen Deniz; KASNAKOĞLU, Coşku (2016-09-01)
A simulation based approach for nonlinear dynamical modelling and feedback control of the drag to lift ratio for aerofoils is investigated through case studies involving NACA 23012, ag13 and b737a aerofoils. The flow around the aerofoils is studied via numerical solutions of the 2D Navier-Stokes (NS) equations. A standard computational fluid dynamics (CFD) solver is extended to be able to measure desired feedback values and to apply a control input to the flow field. The proposed modelling and control appro...
Robust Model Following Control Design for Missile Roll Autopilot
Gezer, R. Berk; Kutay, Ali Türker (2014-07-11)
This paper presents a robust model following control method augmented with error integration and Luenberger observer for anti-air missile roll autopilot designed using optimal control laws. The design is shown to be robust to external disturbance, noisy measurements and sensor lags by frequency domain analysis. The regulation performance of the controller is presented by simulations.
Analytical modeling of asymmetric multi-segment rotor - bearing systems with Timoshenko beam model including gyroscopic moments
Özşahin, Orkun; Özgüven, Hasan Nevzat (2014-11-01)
In this study, analytical modeling and an analysis approach for asymmetric multi-segment rotor bearing systems are presented. Timoshenko beam model which includes the effect of gyroscopic moments is employed for modeling rotor segments. Instead of applying FEM, sub-segment Frequency Response Functions (FRFs) are obtained analytically, and sub-segment FRFs obtained are coupled by using receptance coupling method. Bearing properties are included into system dynamics by employing structural modification techni...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Öznurlu, “Data-Driven Model Discovery and Control of Lateral-Directional Fighter Aircraft Dynamics,” M.S. - Master of Science, Middle East Technical University, 2022.