Design of pattern reconfigurable antenna employing RF-MEMS switches

Gök, Çağlar
In this thesis, the design, simulations, fabrication and measurements of reconfigurable antennas for use in 5G Massive MIMO systems are presented. 26 GHz is chosen as the operating frequency and RF-MEMS switches are used as control elements for pattern reconfiguration. As a first step, a patch antenna is designed based on the excitation of different operation modes of different resonators. A circular patch in the center and a ring resonator structure around it are used to create different radiation patterns by utilizing different modes of each resonator. The antenna is designed to have two feeds; the feed points are located at two opposite sides of the antenna. Two different radiation patterns, namely broadside and conical beams, are obtained depending on whether the antenna ports are fed in phase or out of phase. To increase the number of different radiation modes and to obtain radiation patterns that are not symmetric, two slots are opened in the ground plane of the antenna. Through the RF-MEMS switches placed inside these slots, one of the slots are short circuited and asymmetric radiation patterns are obtained for both in-phase and out of phase feeding. Due to the prolongation of the manufacturing process in METU MEMS Center, in order to validate the reconfiguration concept proposed in this thesis, the design is repeated by using a commercially available dielectric substrate and by choosing a lower frequency band (the sub-6 GHz band) so that the antenna can be manufactured by using LPKF PCB Prototyping machine. To provide in-phase and out of phase excitation of antenna ports, a rat-race coupler is also designed. The antenna is manufactured together with the rat-race coupler and measured.


Three Dimensional Microfabricated Broadband Patch and Multifunction Reconfigurable Antennae for 60 GHz Applications
Hunerli, H. V.; Mopidevi, H.; Cagatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Cetiner, B. A.; BIYIKLI, NECMİ (2015-05-17)
In this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of a broadband patch antenna along with the design and microfabrication of multifunction reconfigurable antenna (MRA) in its static form excluding active switching. The first design is a patch antenna where the energy is coupled with a conductor-backed (CB) coplanar waveguide (CPW)-fed loop s...
Design of an active microstrip array using a microwave circuit simulator
Demir, S; Toker, Canan; Hizal, A (1997-02-26)
An active antenna array design and simulation of this design with a microwave circuit simulator are presented. This active antenna array is a TV receive only (TVRO) antenna operating at 10 GHz. It is a 8x4 array of rectangular microstrip patch antennas. Eight low noise pHEMTs are placed in the antenna. Passive antenna characteristics are usually obtained by analytical techniques or using special softwares for this purpose. The numerical representation as well as the nonreciprocal nature of the active device...
Development of multiband microstrip antennas for GPS applications
Önder, Mustafa Caner; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2019)
In this thesis study, the design, fabrication and measurements of dualband and triband circularly polarized microstrip antennas for GPS applications are presented. Characteristic mode analysis technique is applied to get an insight into circularly polarized patch antennas. A design flow is presented for a circularly polarized L1 GPS band microstrip antenna by using characteristic mode analysis. A single fed L1/L2 GPS band right hand circularly polarized four-slotted patch antenna is designed by using reacti...
Design of asymmetric coplanar strip folded dipole antennas /
Karaciğer, Kamil; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
This thesis includes the design, simulation, production and measurement of an asymmetric coplanar strip folded dipole antenna suitable to be used as an element in a linear array operating at S-band (2.7 GHz - 3.3 GHz). In this same manner, its usefulness as an array antenna is also explored in this thesis. This antenna element consists of a microstrip line feed, microstrip to coplanar stripline transition (BALUN) and asymmetric coplanar strip (ACPS) folded dipole. The planar folded dipole can be constructed...
Design and realization a quasi yagi antenna array and its feed system printed on a ceramic substrate for x-band radar applications
Atabay, Berkay; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2019)
This thesis includes design, simulation, realization and measurement of a four-element quasi- Yagi antenna array printed on a ceramic substrate for X-band radar applications. The microstrip array antenna is designed using four quasi-Yagi antennas in a linear configuration and is printed on Alumina 99.6% substrate made by Coorstek Corporation. The antenna can fit into small areas because of compact structure due to the use of high dielectric constant substrates. In addition, the use of alumina ceramic substr...
Citation Formats
Ç. Gök, “Design of pattern reconfigurable antenna employing RF-MEMS switches,” M.S. - Master of Science, Middle East Technical University, 2022.