Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Novel Method for Modeling IBIS4.2 Four-Level Hysteresis Behavior in an Analog Simulator
Date
2008-01-01
Author
Sabry, Yasser M.
Hareedy, Ahmed
Selim, Mohamed A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
82
views
0
downloads
Cite This
IBIS4.2 (I/O Buffer Information Specification) standard describes the hysteresis behavior from one simulation point to the other. In an analog simulator, solution is obtained based oil multiple iterations in between simulation points. These iterations call lead to undesired behavior. The common problem that might be encountered with this specific behavior in an analog simulator due to iterations will be discussed, and a novel way for implementation that overcomes this problem will be proposed.
URI
https://hdl.handle.net/11511/99223
DOI
https://doi.org/10.1109/eptc.2008.4763627
Conference Name
10th Electronics Packing Technology Conference
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Stochastic modeling of biochemical systems with filtering and smoothing
Haksever, Merve; Uğur, Ömür; Department of Scientific Computing (2019)
Deterministic modeling approach is the traditional way of analyzing the dynamical behavior of a reaction network. However, this approach ignores the discrete and stochastic nature of biochemical processes. In this study, modeling approaches, stochastic simulation algorithms and their relationships to each other are investigated. Then, stochastic and deterministic modeling approaches are applied to biological systems, Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and JACK-STAT signalin...
Efficient Abstractions for the Supervisory Control of Modular Discrete Event Systems
Schmidt, Klaus Verner (2012-12-01)
The topic of this technical note is the nonblocking and maximally permissive abstraction-based supervisory control for modular discrete event systems (DES). It is shown, that an efficient abstraction technique, that was developed for the nonconflict verification of modular DES, is also suitable for the nonblocking supervisory control. Moreover, it is proved that this abstraction technique can be extended by the condition of local control consistency, in order to achieve maximally permissive supervision. Dif...
Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple
MERGEN, SÜHAN; Yıldırım, Ender; TÜRKOĞLU, HAŞMET (Elsevier BV, 2019-03-01)
For the analysis of thermoacoustic (TA) devices, computational methods are commonly used. In the computational studies found in the literature, the flow domain has been modelled differently by different researchers. A common approach in modelling the flow domain is to truncate the computational domain around the stack, instead of modelling the whole resonator to save computational time. However, where to truncate the domain is not clear. In this study, we have investigated how the simulation results are aff...
A NEW METHOD FOR HARMONIC RESPONSE OF NONPROPORTIONALLY DAMPED STRUCTURES USING UNDAMPED MODAL DATA
Özgüven, Hasan Nevzat (Elsevier BV, 1987-09-08)
A method of calculating the receptances of a non-proportionally damped structure from the undamped modal data and the damping matrix of the system is presented. The method developed is an exact method. It gives exact results when exact undamped receptances are employed in the computation. Inaccuracies are due to the truncations made in the calculation of undamped receptances. Numerical examples, demonstrating the accuracy and speed of the method when truncated receptance series are used are also presented. ...
An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
Deniz, Fatih; Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (2016-07-01)
This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. M. Sabry, A. Hareedy, and M. A. Selim, “Novel Method for Modeling IBIS4.2 Four-Level Hysteresis Behavior in an Analog Simulator,” presented at the 10th Electronics Packing Technology Conference, Singapore, Singapur, 2008, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/99223.