On the finite perimeter sets of sub-Lorentzian metric spaces

Çetin, Günseli
In this thesis, inspired by the recent progress on sub-Riemannian geometry, a method of determining the finite perimeter sets of sub-Lorentzian manifolds independent of the original metric structure is suggested and a possible version of Riesz Representation theorem is discussed.


BASKAL, S; ERIS, A; SATIR, A (1994-12-19)
The symmetries and associated conservation laws of the SO(2,1) invariant non-linear sigma model equations in 1+1 dimensions are investigated. An infinite family of generalized local symmetries is presented and the uniqueness of these solutions is discussed.
On the arithmetic operations over finite fields of characteristic three with low complexity
AKLEYLEK, SEDAT; Özbudak, Ferruh; Özel, Claire Susanna (2014-03-15)
In this paper, the Hermite polynomial representation is adapted as a new way to represent certain finite fields of characteristic three. We give the multiplication method to multiply two elements of F-3n in the Hermite polynomial representation with subquadratic computational complexity by using a divide-and-conquer idea. We show that in some cases there is a set of irreducible binomials in the Hermite polynomial representation to obtain modular reduction with a lower addition complexity than the standard p...
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
A general representation for classical detection theory with Euclidean geometry Klasik tespit kurami için Öklid geometrisi ile genel bir gösterim
Bayramog̃lu, Muhammet Fatih; Yılmaz, Ali Özgür (2010-12-01)
A general geometric representation for the classical detection theory which is compatible with Euclidean geometry is proposed. The proposed representation is so generic that can be employed to almost all communication problems. The a posteriori probability of a symbol given an observation occurred decreases exponentially with the square of the Eclidean distance between vectors in R N that the symbol and the observation are mapped onto.
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
Citation Formats
G. Çetin, “On the finite perimeter sets of sub-Lorentzian metric spaces,” M.S. - Master of Science, Middle East Technical University, 2022.