Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thiol functionalized conjugated polymer
Date
2022-12-01
Author
Karakurt, Oğuzhan
Alemdar, Eda
Erer, Mert Can
Cevher, Duygu
Gulmez, Selin
Taylan, Umut
Cevher, Sevki Can
Ozsoy, Gonul Hizalan
Ortac, Bulend
Çırpan, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
© 2022 Elsevier LtdConjugated polymers are promising low-cost, lightweight, and flexible candidates for scalable photovoltaic applications to establish decarbonized energy technologies. However, they possess deficiencies in terms of their lower charge mobility and exciton diffusion length compared to their inorganic counterparts, impeding the efficient charge extraction at high active layer thickness values. In this manner, active layer composition should be tuned to improve light harvesting enabling efficient charge transport. This work presents two new approaches to achieve higher photovoltaic performance for organic photovoltaic systems; thiol modification of the polymers for improved morphological features, and incorporation of ligand-free gold nanoparticles with surface plasmon absorption into the active layer to be stabilized by the covalent interaction with the thiol side groups of the polymers. To achieve this goal, a benzoxadiazole bearing polymer (POxT) and its bromine (POxT-Br) and thiol (POxT-SH) comprising derivatives were synthesized, their electrochemical, optical, photovoltaic, and morphological characterizations were performed. For photovoltaic characterizations, conventional device architecture of ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al was utilized, where the POxT-SH showed the highest JSC and PCE values, 6.52 mA/cm2 and 2.71%, respectively. Gold nanoparticles were synthesized via laser ablation method, and upon incorporation, the PCE value was boosted to 3.29%, with an increase of 21.4% compared to POxT-SH comprising organic solar cells.
Subject Keywords
Bulk heterojunction
,
Gold nanoparticles
,
Organic solar cell
,
Surface plasmon
,
Thiol-gold interaction
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85140138127&origin=inward
https://hdl.handle.net/11511/99886
Journal
Dyes and Pigments
DOI
https://doi.org/10.1016/j.dyepig.2022.110818
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Production of amorphous silicon / p-type crystalline silicon heterojunction solar cells by sputtering and PECVD methods
Eygi, Zeynep Deniz; Turan, Raşit; Erçelebi, Ayşe Çiğdem; Department of Physics (2011)
Silicon heterojunction solar cells, a-Si:H/c-Si, are promising technology for future photovoltaic systems. An a-Si:H/c-Si heterojunction solar cell combines the advantages of single crystalline silicon photovoltaic with thin-film technologies. This thesis reports a detailed survey of heterojunction silicon solar cells with p-type wafer fabricated by magnetron sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques at low processing temperature. In the first part of this study, magnetron ...
Guideline for Optical Optimization of Planar Perovskite Solar Cells
Koc, Mehmet; Soltanpoor, Wiria; Bektas, Gence; Bolink, Henk J.; Yerci, Selçuk (2019-12-01)
Organometallic halide perovskite solar cells have emerged as a versatile photovoltaic technology with soaring efficiencies. Planar configuration, in particular, has been a structure of choice thanks to its lower temperature processing, compatibility with tandem solar cells, and potential in commercialization. Despite all the breakthroughs in the field, the optical mechanisms leading to highly efficient perovskite solar cells lack profound insight. In this paper, a comprehensive guideline is introduced invol...
Syntheses of benzodithiophene and thienopyrroledione containing conjugated random polymers as components for organic solar cells
Azeri, Özge; Çırpan, Ali; Department of Chemistry (2017)
In recent years organic solar cells (OSC) have attracted considerable attention as promising candidates for renewable energy technology because of their low cost, light weight and flexibility. In this study, in order to improve the efficiency of a bulk heterojunction solar cell, two conjugated random polymers were designed. For this purpose, benzodithiophene and thienopyrroledione containing two random copolymers were synthesized. The effects of several acceptors such as benzotriazole and benzothiadiazole o...
Modification of TiO2 and NiO charge selective mesoporous layers using excessive Y and Li additions for carbon based perovskite solar cells
Icli, Kerem Cagatay; Özenbaş, Ahmet Macit (2021-09-15)
Carbon based perovskite solar cells are rapidly emerging as promising photovoltaic devices, combining low cost production and prolonged device operation, due to the exclusion of polymeric conductors and integration of highly durable metal oxide charge selective layers. Modification of metal oxide mesoporous layers via element additions and enhancement of electrical conductivity is a major strategy for reduced internal resistances inside the cell. This work investigates the effect of excessive Y and Li addit...
Fabrication and characterization of PEDOT:PSS hole transport layers for silicon solar cells
Türkay, Deniz; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Heterojunction silicon solar cells have gained considerable interest in recent years with the demonstration of record-high device performances. However, these devices are typically based on inorganic layers fabricated at high temperatures under vacuum environment, using toxic precursors. The low temperature budget, non-toxic chemical contents, and wide range of adjustability in physical and electrical properties make poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) a promising candidate a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Karakurt et al., “Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thiol functionalized conjugated polymer,”
Dyes and Pigments
, vol. 208, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85140138127&origin=inward.