Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of the groundwater modelling component of the Integrated Water Flow Model (IWFM)
Date
2016-01-01
Author
Ercan, Ali
Dogrul, Emin C.
Kadir, Tariq N.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
135
views
0
downloads
Cite This
The Integrated Water Flow Model (IWFM), developed by the California Department of Water Resources, is an integrated hydrological model that simulates key flow processes including groundwater flows, streamflow, stream-aquifer interactions, rainfall-runoff and infiltration. It also simulates the agricultural water demand as a function of soil, crop and climatic characteristics, as well as irrigation practices, and allows the user to meet these demands through pumping and stream diversions. This study investigates the modelling performance of the groundwater module of IWFM using several hypothetical test problems that cover a wide range of settings and boundary conditions, by comparing the simulation results with analytical solutions, field and laboratory observations, or with results from MODFLOW outputs. The comparisons demonstrate that IWFM is capable of simulating various hydrological processes reliably.
Subject Keywords
Integrated hydrological model
,
integrated surface and subsurface flow
,
hydrology
,
groundwater flow
,
verification
,
HYDROLOGY
,
CONDUCTIVITY
,
MANAGEMENT
URI
https://hdl.handle.net/11511/100060
Journal
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES
DOI
https://doi.org/10.1080/02626667.2016.1161765
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Parameter study on tracer flow test
Aydın, Hakkı; Akın, Serhat (2019-02-13)
Periodic measurement of flow rate in production wells is essential to monitor performance of geothermal wells and reservoir. Tracerdilution method has been introduced as a reliable, cheap and environment friendly technique to measure mass flow rate and enthalpy intwo phase geothermal systems. In this study, Sodium Fluorescein is used to measure liquid phase mass flow rate in a two phase productionline and in a single phase liquid injection line. The study includes the effect of flow regime and flowrate on t...
Numerical simulation of saltwater intrusion in a groundwater basin
EMEKLI, NUSRET; Karahanoğlu, Nurkan; Yazıcıgil, Hasan; DOYURAN, VEDAT (1996-07-01)
The spatial and transient behavior of the coupled mechanism of saltwater and freshwater how throughout the Erzin, Turkey, groundwater basin was analyzed to forecast the position of the interface under a particular set of recharge and discharge conditions. The density-driven saltwater intrusion process was simulated with the use of a finite-element model. Physical parameters, initial heads, and boundary conditions of the basin were defined on the basis of available field data, and an areal, steady-state grou...
Investigation of waterhammer problems in the penstocks of small hydropower plants
Çalamak, Melih; Bozkuş, Zafer; Department of Civil Engineering (2010)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of chara...
Assessment of Dewatering Requirements and their Anticipated Effects on Groundwater Resources: A Case Study from the Caldag Nickel Mine, Western Turkey
Peksezer-Sayit, Ayse; Cankara-Kadioglu, Cigdem; Yazıcıgil, Hasan (2015-06-01)
Dewatering requirements of three open pits located in western Turkey and the impact of dewatering on groundwater resources were evaluated using a three-dimensional numerical groundwater flow model. The groundwater was modeled using MODFLOW software and the dewatering was simulated using the MODFLOW Drain Package. The drain cell configurations were determined by pit boundaries; invert elevations of drains corresponded to the bench elevations in the mining schedule, which varied dynamically among the three pi...
Implementation of a flood management system for Nicosia
Zaifoğlu, Hasan; Yanmaz, Ali Melih; Akıntuğ, Bertuğ; Department of Civil Engineering (2018)
The implementation of effective flood management particularly in ungauged basins requires regional frequency analysis (RFA) to determine the occurrence probabilities of extreme precipitation events. In this context, the quality control and homogeneity analysis of daily precipitation series of 37 stations in Northern Cyprus are carried out and trend analyses are employed to assess the variability of extreme precipitation indices. The increasing trends especially in winter period are dominated the northern pa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ercan, E. C. Dogrul, and T. N. Kadir, “Investigation of the groundwater modelling component of the Integrated Water Flow Model (IWFM),”
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES
, vol. 61, no. 16, pp. 2834–2848, 2016, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100060.