Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control
Date
2022-01-01
Author
Yurchenko, Vladimir
ÇİYDEM, MEHMET
Koç, Seyit Sencer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
96
views
0
downloads
Cite This
—Finite-aperture microwave vortex beams of various structures in the near-, middle-, and far-field propagation zones have been simulated. The decay of external sidelobes leading to the end of non-diffractive propagation within a fraction of the near-field zone is observed. A ring source of the vortex beams with phase-shift and frequency-sweep control of angular modes and polarization patterns through the use of patch antenna arrays of varying polarization is suggested. A new form of the beam wavefront variation with azimuthal undulation has been proposed that allows one to significantly diversify and dynamically control the beam structure. The consequences of a limited number of antenna patches in a circular array have been considered. The effects of a gradual drop of radiation power along the array and the use of multiple feed points for improving the beams have been simulated.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137862186&origin=inward
https://hdl.handle.net/11511/101690
Journal
Progress In Electromagnetics Research C
DOI
https://doi.org/10.2528/pierc22071106
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Computational image formation with photon sieves for milli arcsecond solar imaging
Öktem, Sevinç Figen; Davila, Joseph (null; 2016-07-30)
A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This diffractive imaging element is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture with sufficient surface figure accuracy to achieve diffraction-limited resolution. On the other hand, photon sieves enable diffraction-limited imaging with...
Experimental investigation of the turbulent near wake flow field of multiscale/fractal grids
Amiri Hazaveh, Hooman; Uzol, Oğuz; Department of Aerospace Engineering (2018)
Turbulent near-field flow of three different fractal grids, as well as conventional square grid, is investigated using two-dimensional particle image velocimetry. All grids are designed to maintain similar solidity, effective mesh size, and the smallest thickness for comparison. Experiments are conducted at a Reynolds number of 12000 based on effective mesh size. The instantaneous velocity field is realized on four sets of 35 equally spaced horizontal planes downstream of turbulence-generating-grids. Threed...
Numerical modeling and optimization of HgCdTe infrared photodetectors for thermal imaging
Koçer, Hasan; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2011)
This thesis presents a detailed investigation of the performance limiting factors of long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) p on n HgCdTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. Numerical simulations under dark and illuminated conditions were performed with different absorber layer thicknesses, material...
Vortex imaging with varying temperature revealed by SHPM on Bi(2)Sr(2)CaCu(2)O8+y
Mihalache, V.; Dede, M.; Oral, Ahmet; Sandu, V. (2008-04-01)
Scanning Hall probe microscopy with an effective spatial resolution of similar to 1 mu m has been used to investigate the vortex structures in superconducting Bi2Sr2CaCu2O8+delta single crystals in the temperature range 77.3-81.3 K and zero applied field (in the presence of the earth field). The vortex images were obtained in real time mode as the temperature increased slowly for 3.36 h. At 77.3 K, the vortices were arranged in a chain structure. With the increase of the temperature, two jumps in the vortex...
Numerical analysis of long wavelength infrared HgCdTe photodiodes
Kocer, H.; Arslan, Y.; Beşikci, Cengiz (2012-01-01)
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1-xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mec...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Yurchenko, M. ÇİYDEM, and S. S. Koç, “Finite-Aperture Microwave Bessel Beams with Vortex Twisting, Fracturing, and Dynamic Phase-Shift Control,”
Progress In Electromagnetics Research C
, vol. 124, pp. 53–68, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137862186&origin=inward.