Piezoelectric ceramics and their applications in smart aerospace structures

Çalışkan, Tarkan
This thesis investigates some applications of smart structures in aerospace engineering. The smart structures considered are finite and flat aluminum beam-like and plate-like structures with surface bonded PZT (Lead-Zirconate-Titanate) patches. The smart structures are studied in cantilevered configuration. The thesis gives the theoretical and experimental studies conducted on the smart structures with particular attention given to the vibration control aspects. In the determination of the structural models of the smart structures, the finite element package program ANSYS® (v.5.6) is used. During the analysis and the design of the vibration controllers both finite element approach and the experimental system identification techniques are utilized. inThe thesis first determines the structural models of smart beam-like and plate-like structures. By using those models, the study extensively analyzes the static and dynamic behaviour of the smart structures by considering the effects of the smart elements like the size, placement and the actuation voltages of the PZT patches in detail. The study then proceeds to obtain the models of PID and H«, vibration controllers, which are intended to be used in the suppression of the vibrations of the smart structures due to their first two flexural modes. The closed-loop control characteristics of the smart structures are studied. It was shown that the designed controllers ensure robust performance of the system in the presence of uncertainties.


Smart structures and their applications on active vibration control: Studies in the Department of Aerospace Engineering, METU
Şahin, Melin; Yaman, Yavuz; Nalbantoglu, Volkan; Ulker, Fatma Demet; Caliskan, Tarkan (Springer Science and Business Media LLC, 2008-08-01)
This work presents the theoretical and experimental studies conducted in Aerospace Engineering Department of Middle East Technical University on smart structures with particular attention given to the structural modelling characteristics and active suppression of in-vacuo vibrations. The smart structures considered in these analyses are finite and flat aluminium cantilever beam-like (called as smart beam) and plate-like (called as smart fin) structures with surface bonded lead-zirconate-titanate patches. Fi...
Active vibration suppression of a smart beam via self sensing piezoelectric actuator
Uğur, Arıdoğan; Şahin, Melin; Yaman, Yavuz; Volkan, Nalbantoğlu (null; 2009-08-17)
In this paper, an active vibration suppression of a smart beam using self-sensing piezoelectric actuator is presented. The smart beam is composed of a cantilever aluminium beam with four surface-bonded piezoelectric patches symmetrically located both side of the beam. Piezoelectric materials can transform mechanical deformation to electric signal and vice versa. This property of piezoelectric materials enables them to be used as an actuator and a sensor. In self-sensing actuator configuration, the piezoelec...
Panel-Method-Based Path Planning and Collaborative Target Tracking for Swarming Micro Air Vehicles
Uzol, Oğuz; Yavrucuk, İlkay (American Institute of Aeronautics and Astronautics (AIAA), 2010-03-01)
This paper presents an application of the potential field panel method commonly used in aerodynamics analysis to obtain streamlinelike trajectories and use them for path planning and collaborative target tracking for swarming micro air vehicles in an urban environment filled with complex shaped buildings and other architectural structures. In addition, we introduce a performance matching technique that relates the flu id velocities, which are obtained as a part of the panel method solution, to vehicle veloc...
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Piezoelectric Cantilever Prototype for Energy Harvesting in Computing Applications
Beker, Levent; Külah, Haluk; Muhtaroglu, Ali (2011-12-02)
This paper presents a piezoelectric energy harvester (PEH) to convert vibrations to electrical power. A unimorph cantilever beam is used to generate voltage on piezoelectric material bonded close to the anchor of the cantilever beam. A 4.85 x 1 x 0.04 cm structural layer with piezoelectric material yields peak-to-peak voltage of 64 V at the resonance frequency of the structure. The empirically confirmed maximum power output is close to 0.5 mW. The results from validation data on the observed structure has b...
Citation Formats
T. Çalışkan, “Piezoelectric ceramics and their applications in smart aerospace structures,” Ph.D. - Doctoral Program, Middle East Technical University, 2002.