Effect of compatibilizers on the gas separation performance of polycarbonate membranes

Download
2003
Şen, Değer
In this study, the effect of compatibilizers on the gas separation performance of polycarbonate (PC) membranes was investigated. Membranes were prepared by solvent evaporation method. They were characterized by single gas permeability measurements of O2, N2, H2 and CO2 as well as scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR). Membranes containing 0.5 to 10 w% p-nitroaniline (pNA) were prepared to study the effect of compatibilizer concentration on the membrane performance. Permeabilities of all gases decreased but selectivities increased with pNA concentration. The membranes with 5 w% pNA showed a selectivity of 114.5 for H2 over N2, 53.9 for CO2 over N2 and 13.4 for O2 over N2 at room temperature, whereas, the H2/N2, CO2/N2 and O2/N2 selectivities for pure PC membranes were 43.5, 20.6 and 5.6, respectively. The N2 permeabilities through pure PC membrane and 5 w% pNA/PC membrane were 0.265 and 0.064 barrer, respectively. The glass transition temperature of the membranes decreased with increasing pNA concentration. FTIR spectra showed that the peaks assigned to nitro and amine groups of pNA shifted and/or broadened. The DSC and FTIR results suggested an interaction between PC and pNA. The effect of type of compatibilizer was also studied. The compatibilizers were 4-amino 3-nitro phenol (ANP), Catechol and 2-hydroxy 5-methyl aniline (HMA). Similar to membranes prepared with pNA, membranes prepared with these compatibilizers had a lower permeability and glass transition temperature but higher selectivity than pure PC membranes. Their FTIR spectra were also indicated a possible interaction between PC and compatibilizer. In conclusion, PC/compatibilizer blend membranes for successful gas separation were prepared. Low molecular weight compounds with multifunctional groups were found to effect

Suggestions

Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes
Cakal, Ulgen; Yılmaz, Levent; Kalıpçılar, Halil (2012-11-01)
The performance of zeolite and low molecular weight additive incorporated polyethersulfone (PES) membranes on the separation of CO2/CH4 mixtures at 35 degrees C was investigated. Four types of membranes, pure PES, PES/ 2-hydroxy 5-methyl aniline (HMA), PES/SAPO-34 and PES/SAPO-34/HMA, were prepared by solvent evaporation method. The CO2 concentration in the feed was varied between 5 and 70% by volume. PES/SAPO-34 membranes had a total permeability coefficient of 3 Barrer for an equimolar mixture, which was ...
Effect of Gas Permeation Temperature and Annealing Procedure on the Performance of Binary and Ternary Mixed Matrix Membranes of Polyethersulfone, SAPO-34, and 2-Hydroxy 5-Methyl Aniline
Oral, Edibe Eda; Yılmaz, Levent; Kalıpçılar, Halil (Wiley, 2014-09-05)
This study investigated the effect of annealing time and temperature on gas separation performance of mixed matrix membranes (MMMs) prepared from polyethersulfone (PES), SAPO-34, and 2-hydroxy 5-methyl aniline (HMA). A postannealing period at 120 degrees C for a week extensively increased the reproducibility and stability of MMMs, but for pure PES membranes no postannealing was necessary for stable and reproducible performance. The effect of operation temperature was also investigated. The permeabilities of...
Effect of particle size and heating rate on the combustion of Silopi asphaltite
Altun, Naci Emre; Kök, Mustafa Verşan (2002-05-01)
In this study, the effects of particle size and heating rate on the combustion properties of Silopi asphaltite were investigated. Nonisothermal thermogravimetry experiments were carried out at three different size fractions and five different heating rates. The TG/DTG experiments were carried out from ambient to 900 degreesC in air. The data obtained were analyzed for the determination of the combustion characteristics of the sample. Also an Arrhenius type kinetic model complemented with the weighed mean ac...
Effect of preparation parameters on the performance of conductive composite gas separation membranes
Gulsen, D; Hacarloglu, P; Toppare, Levent Kamil; Yılmaz, Levent (2001-02-15)
Mixed matrix composite membranes of a conducting polymer, polypyrrole (PPy), and an insulating polymer, polybisphenol-A-carbonate (PC) were prepared by a combined in-situ polymerization and solvent evaporation. Mixed matrix composite membranes were synthesized to combine the good gas transport properties of conductive polymer, PPy, with good mechanical properties of PC.
Effect of PTFE nanoparticles in catalyst layer with high Pt loading on PEM fuel cell performance
Avcioglu, Gokce S.; FIÇICILAR, BERKER; Eroğlu, İnci (Elsevier BV, 2016-06-22)
In this study, Polytetrafluoroethylene (PTFE) was added to catalyst layer structure. This modification was aimed at facilitating excess water removal from the cathode catalyst layer with high Pt loading (1.2 mg/cm(2)). The weight percentage of PTFE in the catalyst inks varied from zero to 30. Membrane electrode assemblies were prepared with a commercial catalyst containing 70 wt % Pt on carbon, by ultrasonic spray coating technique. PEM fuel cell performance testing was carried out with two different membra...
Citation Formats
D. Şen, “Effect of compatibilizers on the gas separation performance of polycarbonate membranes,” M.S. - Master of Science, Middle East Technical University, 2003.