Prediction of protein subcellular localization using global protein sequence feature

Download
2003
Bozkurt, Burçin
The problem of identifying genes in eukaryotic genomic sequences by computational methods has attracted considerable research attention in recent years. Many early approaches to the problem focused on prediction of individual functional elements and compositional properties of coding and non coding deoxyribonucleic acid (DNA) in entire eukaryotic gene structures. More recently, a number of approaches has been developed which integrate multiple types of information including structure, function and genetic properties of proteins. Knowledge of the structure of a protein is essential for describing and understanding its function. In addition, subcellular localization of a protein can be used to provide some amount of characterization of a protein. In this study, a method for the prediction of protein subcellular localization based on primary sequence data is described. Primary sequence data for a protein is based on amino acid sequence. The frequency value for each amino acid is computed in one given position. Assigned frequencies are used in a new encoding scheme that conserves biological information based on point accepted mutations (PAM) substitution matrix. This method can be used to predict the nuclear, the cytosolic sequences, the mitochondrial targeting peptides (mTP) and the signal peptides (SP). For clustering purposes, other than well known traditional techniques,

Suggestions

Prediction of protein subcellular localization based on primary sequence data
Özarar, Mert; Atalay, Mehmet Volkan; Department of Computer Engineering (2003)
Subcellular localization is crucial for determining the functions of proteins. A system called prediction of protein subcellular localization (P2SL) that predicts the subcellular localization of proteins in eukaryotic organisms based on the amino acid content of primary sequences using amino acid order is designed. The approach for prediction is to nd the most frequent motifs for each protein in a given class based on clustering via self organizing maps and then to use these most frequent motifs as features...
Predicting Protein-Protein Interactions from the Molecular to the Proteome Level
Keskin, Ozlem; Tunçbağ, Nurcan; Gursoy, Attila (2016-04-27)
Identification of protein protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete int...
Prediction of polyadenylation sites by probe level analysis of microarray data
İlgüner, Yiğit; Can, Tolga; Department of Computer Engineering (2013)
In general, identi fication of polyadenylation sites in 3' untranslated regions of genes is carried out by DNA sequencing. However, there is no direct high-throughput screen to detect the polyadenylation sites which are activated under particular circumstances or in certain tissues. Since microarray manufacturers usually overlook the alternative polyadenylation events when their microarrays are produced, certain design decisions of these microarrays can be used for detecting polyadenylation sites. In this t...
Prediction of protein subcellular localization based on primary sequence data
Ozarar, M; Atalay, Mehmet Volkan; Atalay, Rengül (2003-01-01)
This paper describes a system called prediction of protein subcellular localization (P2SL) that predicts the subcellular localization of proteins in eukaryotic organisms based on the amino acid content of primary sequences using amino acid order. Our approach for prediction is to find the most frequent motifs for each protein (class) based on clustering and then to use these most frequent motifs as features for classification. This approach allows a classification independent of the length of the sequence. ...
DETERMINATION OF SELENIUM IN BIOLOGICAL MATRICES USING A KINETIC CATALYTIC METHOD
GOKMEN, IG; ABDELQADER, E (Royal Society of Chemistry (RSC), 1994-04-01)
A simple and sensitive catalytic spectrophotometric method was developed for the determination of selenium in biological matrices. The method is based on the catalytic effect of selenium on the reaction of Methylene Blue (MB) with sodium sulfide. For a given reaction between MB and sodium sulfide, the change in the MB absorbance with time was monitored, then the time (t) required for completion of the reaction was determined, and t(-1) was calculated. A plot of t(-1) versus selenium concentration constitute...
Citation Formats
B. Bozkurt, “Prediction of protein subcellular localization using global protein sequence feature,” M.S. - Master of Science, Middle East Technical University, 2003.