Water dispersed epoxy resin for surface coatings

Şen, Evrim
In this research water dispersed epoxy varnishes were produced by reacting solid epoxy resin with ethylene diamine (EDA) and maleinized fatty acids of linseed oil. Maleinized fatty acid (MFA) was produced by the maleinization process, in which, fatty acid and maleic anhydride were reacted under nitrogen atmosphere. Maleinization was performed in order to insert hydrophilic groups to the fatty acid chains, which were then inserted to the backbone of the epoxy resin. This was done to give water dispersibility to the hydrophobic epoxy resin. Solid epoxy resin was dissolved in 1,4-dioxane. Ethylene diamine was then added to the solution at 50°C, and stirred for 4 hours. Then the temperature was increased to 80oC and kept for 2 hours. Maleinized fatty acids were then introduced, and the reaction was carried out at 90oC for 10 hours. 1,4-dioxane was used for the removal of the water, which forms as the byproduct. Then the driers were added. The carboxylic groups of the maleinized fatty acid were neutralized by morpholine and the product was dispersed in water. The varnish was applied on test panels and left for air-drying for 24 hours and then baked at 140°C for 5 hours. The free epoxy content was determined by pyridinium-chloride titration and it was seen that all the epoxy groups reacted. Also, produced fatty acid was characterized by FTIR spectroscopy and maleinized fatty acid was characterized by H-NMR and FTIR spectroscopy. Hardness, bending, impact resistance, gloss, and abrasion resistance tests were carried out on hardened varnish specimens. The samples generally showed good mechanical and physical properties. While the baking time was increased the hardness of product increased. Samples showed superior impact resistance, gloss, and flexibility.


Flexibility improvement of epoxy resin by liquid rubber modification
Kaynak, Cevdet; Tincer, T (2002-09-01)
The objective of this study was to improve the flexibility of diglycidyl ether of bisphenol-A based epoxy resin by using a liquid rubber. For this purpose, hydroxyl terminated polybutadiene (HTPB) was used at two concentrations of 1% and 1.5% by weight. In order to improve compatibility between liquid rubber and epoxy, a silane coupling agent (SCA) was also used. Bending test specimens were moulded by using four different orders of mixing of HTPB with SCA and hardener to investigate the compatibility of HTP...
Reinforcement of epoxies by boron minerals
Babuçcuoğlu, Yurdaer; Tinçer, Teoman; Özdemir, Tonguç; Department of Polymer Science and Technology (2015)
As polymers/fillers have shown much improved mechanical and thermal properties, the subject of epoxy resin reinforcement using boron minerals fillers has become valuable subject to study. The aim of this study is how boron minerals influence epoxy resins’ mechanical and thermal properties under gamma irradiation. The effects of boron on the mechanical and thermal properties of epoxy were studied in terms of mineral type, mineral loading concentration and irradiation dose in air and under vacuum. Bisphenol-A...
Effects of RTM mold temperature and vacuum on the mechanical properties of epoxy/glass fiber composite plates
Kaynak, Cevdet; Isitman, Nihat Ali (2008-08-01)
The purpose of this study is to investigate the effects of mold temperature, application of vacuum at resin exit ports, and initial resin temperature on the mechanical properties of epoxy matrix woven glass fiber reinforced composite specimens produced by resin transfer molding (RTM). For this purpose, six mold temperatures (25, 40, 60, 80, 100, and 120 degrees C), two initial resin temperatures (15 and 28 degrees C), and vacuum (0.03 bar) and without vacuum (similar to 1 bar) conditions are utilized. Speci...
Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites
Kaynak, Cevdet; Isitman, Nihat Ali (2009-11-01)
Epoxy resin/montmorillonite nanocomposites were obtained via in-situ intercalative polymerization. Na-montmorillonites modified with octaclecyl, hexadecyl and dodecyl trimethylammonium, benzyl triethylammonium and tetramethylammonium ions were used in diglycidyl ether of bisphenol-A epoxy resin. Montmorillonites modified with long alkyl ammonium ions yielded intercalated nanocomposites whereas those with benzyl or very short alkyl ammonium ions gave phase separated microcomposites. Significant improvements ...
Water-borne and air-drying oil-based resins
Gündüz, Güngör; Khalid, AH; Mecidoglu, IA; Aras, L (Elsevier BV, 2004-04-01)
New water-borne polyurethane resins were produced using maleinized monoglyceride (MMG), hydroxyl-terminated polybutadiene (HTPB), toluene di-isocyanate, and ethylene diamine (EDA). Maleinization was performed in order to insert hydrophilic groups in the fatty acid residues, which were then inserted to the backbone of polyurethane. The MMG was mixed with HTPB in different proportions, and the mixture was used as the polyol part of water-borne polyurethane resin. It was then reacted with toluene di-isocyanate...
Citation Formats
E. Şen, “Water dispersed epoxy resin for surface coatings,” M.S. - Master of Science, Middle East Technical University, 2003.