Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Second order rotational effect on nonradial oscillations in l-Scuti stars
Download
index.pdf
Date
2004
Author
Matalgah, Zıyad
Metadata
Show full item record
Item Usage Stats
57
views
45
downloads
Cite This
In this work the effect of rotation on oscillation frequencies have been inves- tigated . Rotation has been treated as a perturbation and detailed calculations were done on the infuence of second order rotation . We used an evolutionary model of DELTA-Scuti star V1162 Ori with a mass of 1:8 solar mass. The eigenfrequencies were calculated in two cases , the slow rotation case with vsini = 46km/s and the fast rotation case with vsini = 61.9km/s. Calculation were carried out by a modifed oscillation program and results were compared to observations.
Subject Keywords
Physics.
URI
http://etd.lib.metu.edu.tr/upload/12604741/index.pdf
https://hdl.handle.net/11511/14026
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Hamilton-Jacobi theory of continuous systems
Güler, Y. (Springer Science and Business Media LLC, 1987-8)
The Hamilton-Jacobi partial differnetial equation for classical field systems is obtained in a 5n-dimensional phase space and it is integrated by the method of characteristics. Space-time partial derivatives of Hamilton’s principal functionsS μ (Φ i ,x ν ) (μ,ν=1,2,3,4) are identified as the energy-momentum tensor of the system.
Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
Colliding gravitational plane waves : bell-szekeres solution
Cambaz, Efsun; Karasu, Atalay; Department of Physics (2005)
The collision of pure electromagnetic plane waves with collinear polarization in Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum Einstein theory are studied. The singularity structure of the Bell-Szekeres and the Szekeres solutions is examined by using curvature invariants. As a final work, the collision of the plane waves in dilaton gravity theory is studied and also the singularity structure of the corresponding space-time is examined.
Nonlinear mode coupling and sheared flow in a rotating plasma
Uzun Kaymak, İlker Ümit; Choi, S.; Clary, M. R.; Ellis, R. F.; Hassam, A. B.; Teodorescu, C. (IOP Publishing, 2009-01-01)
Shear flow is expected to stabilize the broad spectrum of interchange modes in rotating plasmas. However, residual fluctuations may still persist. To investigate the presence of such fluctuations, sixteen magnetic pickup coils equally spaced on a crown have been mounted inside the vacuum vessel, at the edge of a rotating plasma in mirror configuration. A comprehensive analysis of the magnetic fluctuations shows that very low spatial mode numbers survive under the imposed shear flow. Nevertheless, temporal F...
Entanglement in the relativistic quantum mechanics
Yakaboylu, Enderalp; İpekoğlu, Yusuf; Department of Physics (2010)
In this thesis, entanglement under fully relativistic settings are discussed. The thesis starts with a brief review of the relativistic quantum mechanics. In order to describe the effects of Lorentz transformations on the entangled states, quantum mechanics and special relativity are merged by construction of the unitary irreducible representations of Poincaré group on the infinite dimensional Hilbert space of state vectors. In this framework, the issue of finding the unitary irreducible representations of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Matalgah, “Second order rotational effect on nonradial oscillations in l-Scuti stars,” M.S. - Master of Science, Middle East Technical University, 2004.