Second order rotational effect on nonradial oscillations in l-Scuti stars

Download
2004
Matalgah, Zıyad
In this work the effect of rotation on oscillation frequencies have been inves- tigated . Rotation has been treated as a perturbation and detailed calculations were done on the infuence of second order rotation . We used an evolutionary model of DELTA-Scuti star V1162 Ori with a mass of 1:8 solar mass. The eigenfrequencies were calculated in two cases , the slow rotation case with vsini = 46km/s and the fast rotation case with vsini = 61.9km/s. Calculation were carried out by a modifed oscillation program and results were compared to observations.

Suggestions

Hamilton-Jacobi theory of continuous systems
Güler, Y. (Springer Science and Business Media LLC, 1987-8)
The Hamilton-Jacobi partial differnetial equation for classical field systems is obtained in a 5n-dimensional phase space and it is integrated by the method of characteristics. Space-time partial derivatives of Hamilton’s principal functionsS μ (Φ i ,x ν ) (μ,ν=1,2,3,4) are identified as the energy-momentum tensor of the system.
Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
Colliding gravitational plane waves : bell-szekeres solution
Cambaz, Efsun; Karasu, Atalay; Department of Physics (2005)
The collision of pure electromagnetic plane waves with collinear polarization in Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum Einstein theory are studied. The singularity structure of the Bell-Szekeres and the Szekeres solutions is examined by using curvature invariants. As a final work, the collision of the plane waves in dilaton gravity theory is studied and also the singularity structure of the corresponding space-time is examined.
Entanglement in the relativistic quantum mechanics
Yakaboylu, Enderalp; İpekoğlu, Yusuf; Department of Physics (2010)
In this thesis, entanglement under fully relativistic settings are discussed. The thesis starts with a brief review of the relativistic quantum mechanics. In order to describe the effects of Lorentz transformations on the entangled states, quantum mechanics and special relativity are merged by construction of the unitary irreducible representations of Poincaré group on the infinite dimensional Hilbert space of state vectors. In this framework, the issue of finding the unitary irreducible representations of ...
Nonlinear mode coupling and sheared flow in a rotating plasma
Uzun Kaymak, İlker Ümit; Choi, S.; Clary, M. R.; Ellis, R. F.; Hassam, A. B.; Teodorescu, C. (IOP Publishing, 2009-01-01)
Shear flow is expected to stabilize the broad spectrum of interchange modes in rotating plasmas. However, residual fluctuations may still persist. To investigate the presence of such fluctuations, sixteen magnetic pickup coils equally spaced on a crown have been mounted inside the vacuum vessel, at the edge of a rotating plasma in mirror configuration. A comprehensive analysis of the magnetic fluctuations shows that very low spatial mode numbers survive under the imposed shear flow. Nevertheless, temporal F...
Citation Formats
Z. Matalgah, “Second order rotational effect on nonradial oscillations in l-Scuti stars,” M.S. - Master of Science, Middle East Technical University, 2004.