Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational study of subsonic flow over a delta canard-wing-body configuration
Date
1998-07-01
Author
Tuncer, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
279
views
0
downloads
Cite This
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparison of the pressure data with the available experimental data at Re = 0.32 x 10(6) and Re = 1.4 x 10(6) shows a significant Reynolds-number dependence. Good agreement is obtained with the experiment for the canard-off configuration at all three angles of attack, and for the canard-on configuration at 20-deg angle of attack.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/48869
Journal
JOURNAL OF AIRCRAFT
DOI
https://doi.org/10.2514/2.2359
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Computational study of flapping airfoil aerodynamics
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
Unsteady, viscous, low-speed flows over a NACA 0012 airfoil oscillated in plunge and/or pitch at various reduced frequency, amplitude, and phase shift are computed. Vortical wake formations, boundary-layer flows at the leading edge, the formation of leading-edge vortices and their downstream convection are presented in terms of unsteady particle traces. Flow separation characteristics and thrust-producing wake profiles are identified. Computed results compare well with water tunnel flow visualization and fo...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Near-surface topology of unmanned combat air vehicle planform: Reynolds number dependence
Elkhoury, M; Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2005-09-01)
The Reynolds number dependence of the near-surface flow structure and topology on a representative unmanned combat air vehicle planform is characterized using a technique of high-image-density particle image velocimetry, to complement classical dye visualization. Patterns of streamline topology, including bifurcation lines, as well as contours of streamwise and transverse velocity, surface-normal vorticity, and Reynolds stress correlation, all immediately adjacent to the surface of the planform, provide qua...
Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. H. Tuncer, “Computational study of subsonic flow over a delta canard-wing-body configuration,”
JOURNAL OF AIRCRAFT
, pp. 554–560, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48869.