Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Time-domain calculation of sound propagation in lined ducts with sheared flows
Date
2000-05-01
Author
Özyörük, Yusuf
Long, LN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, numerical simulations of the NASA Langley Research Center flow-impedance tube are carried out at actual conditions. Calculations are realized fur mean-flow peak velocities as high as Mach 0.5 at various frequencies. Results are compared with those obtained with uniform mean Rows and experimental data. It is shown that solutions that were not attainable previously with uniform Rows at high Mach numbers can now be obtained with the help of the no-slip conditions of sheared background Rows at the wall.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/40644
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/2.1056
Collections
Department of Aerospace Engineering, Article