Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of high frequency behavior of plate and beam structures by statistical energy analysis method
Download
index.pdf
Date
2004
Author
Yılmazel, Canan
Metadata
Show full item record
Item Usage Stats
202
views
112
downloads
Cite This
Statistical Energy Analysis (SEA) is one of the methods in literature to estimate high frequency vibrations. The inputs required for the SEA power balance equations are damping and coupling loss factors, input powers to the subsystems. In this study, the coupling loss factors are derived for two and three plates joined with a stiffener system. Simple formulas given in the literature for coupling loss factors of basic junctions are not used and the factors are calculated from the expressions derived in this study. The stiffener is modelled as line mass, Euler beam, and open section channel having double and triple coupling. Plate is modelled as Kirchoff plate. In the classical SEA approach the joint beam is modelled as another subsystem. In this study, the beam is not a separate subsystem but is used as the characteristics of the joint and to calculate the coupling loss factor between coupled plates. Sensitivity of coupling loss factors to system parameters is studied for different beam approaches. The derived coupling loss factors and input powers are used to calculate the subsystem energies by SEA. The last plate is joined to the first one to simulate the fuselage structure. A plate representing floor structure and acoustic volume are also added. The different modelling types are assessed by applying pressure wave excitation. It is shown that deriving the parameters as given in this study increases the efficiency of the SEA method.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12605133/index.pdf
https://hdl.handle.net/11511/14575
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental investigation of a spherical solar collector
Bakır, Öztekin; Yamalı, Cemil; Department of Mechanical Engineering (2006)
The purpose of this study is to investigate the performance of a spherical solar collector by using numerical and experimental methods. For this analysis, equations were obtained by choosing appropriate control volumes in the system and applying The First Law of Thermodynamics. The experiments were realized at four different mass flow rates and non-flow situation. For the numerical simulation of the system, a computer program in Mathcad was written. Another computer program in Mathcad was written for the va...
Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine
Kahveci, Harika Senem (ASME International, 2014-06-01)
This paper compares predictions from a 3D Reynolds-averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature p...
Performance anallysis of an intermediate temperature solid oxide fuel cell
Timurkutluk, Bora; Tarı, İlker; Department of Mechanical Engineering (2007)
An intermediate temperature solid oxide fuel cell (SOFC) is developed and its performance is investigated experimentally and theoretically. In the experimental program, a gadolinium doped ceria based membrane electrode group is developed with the tape casting and screen printing methodology and characterized. An experimental setup is devised for the performance measurement of SOFCs and the performance of produced cells is investigated over a range of parameters including the electrolyte thickness, the sinte...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Yılmazel, “Analysis of high frequency behavior of plate and beam structures by statistical energy analysis method,” Ph.D. - Doctoral Program, Middle East Technical University, 2004.