Design of mini swimming robot using piezoelectric actuator

Download
2004
Tunçdemir, Şafakcan
This thesis deals with the design, fabrication and analysis of a novel actuator for a fish-like swimming mini robot. The developed actuator is tested on a mini boat. The actuator relies on a novel piezoelectric ultrasonic motor, developed according to the design requirements of actuator for fish-like swimming mini robots. Developed motor is within the dimensions of 25x6x6 mm in a simple mechanical structure with simple driving circuitry compared to its predecessor. Bidirectional rotation of the motor is transformed to a flapping tail motion for underwater locomotion in a simple mechatronic structure. The simplicity in the motor and actuator enables further development on the miniaturization, improvement on the performances as well as easy and low cost manufacturing. The developed actuator is a candidate to be used in mini swimming robot with fish- like locomotion.

Suggestions

Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Simplified model for computer-aided analysis of integral bridges
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2000-08-01)
This paper presents a computer-aided approach for the design of integral-abutment bridges. An analysis procedure and a simplified structure model are proposed for the design of integral-abutment bridges considering their actual behavior and load distribution among their various components. A computer program, for the analysis of integral-abutment bridges, has been developed using the proposed analysis procedure and structure model. The program is capable of analyzing an integral-abutment bridge for each con...
Assessment on the performances of air lime-ceramic mortars with nano-Ca(OH)(2) and nano-SiO2 additions
Ergenc, Duygu; Sierra-Fernandez, Aranzazu; del Mar Barbero-Barrera, Maria; Gomez-Villalba, Luz S.; Fort, Rafael (Elsevier BV, 2020-01-30)
This research presents a novel approach based on the combination of nanotechnology and Roman technology by investigating how adding nanoCa(OH)(2) and nanoSiO(2) modify the performance of air lime mortars containing Roman ceramics. Microstructural, physico-mechanical properties were periodically controlled until 120 days of curing. XRD and TGA analyses showed that adding nanoSiO(2) either alone or with nanoCa(OH)(2) were more beneficial to improve the pozzolanic activity in the mortars. The less stable hydra...
Citation Formats
Ş. Tunçdemir, “Design of mini swimming robot using piezoelectric actuator,” M.S. - Master of Science, Middle East Technical University, 2004.