Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and performance analysis of a variable pitch axial flow fan for Anakara wind tunnel
Download
index.pdf
Date
2006
Author
Yalçın, Levent
Metadata
Show full item record
Item Usage Stats
306
views
135
downloads
Cite This
In this study, a variable pitch axial flow fan is designed and analysed for Ankara Wind Tunnel (AWT). In order to determine the loss caharacteristics of AWT, an algorithm is developed and the results are validated. Also some pressure and velocity measurements are made at the fan section to find the losses experimentally. After completion of the fan design, analyses are made at different volumetric flowrates and blade angles including the design point and the performance characteristics of the fan are obtained and thereafter the operating range of the tunnel is deterimened.
Subject Keywords
Aeronautics.
URI
http://etd.lib.metu.edu.tr/upload/3/12607091/index.pdf
https://hdl.handle.net/11511/15717
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Evaluation of a new turbulence model for boundary layer flows with pressure gradient
Marangoz, Alp; Çıray, Cahit; Department of Aerospace Engineering (2005)
In this thesis, a new turbulence model developed previously for channel and flat plate flows is evaluated for flat plate flows with pressure gradient. For this purpose a flow solver, which uses boundary layer equations as the governing equations and Von Karman momentum integral equation for the calculation of skin friction, is developed. It is shown that the error of the new turbulence model, in predicting the velocity profile, is less than 5 % for the flat plate flows without pressure gradient and less tha...
Three-dimensional design and analysis of a compressor rotor blade
Özgür, Cumhur; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
Three-dimensional design and three-dimensional CFD analysis of a compressor rotor stage are performed. The design methodology followed is based on a mean line analysis and a radial equilibrium phase. The radial equilibrium is established at a selected number of radii. NACA 65 series airfoils are selected and stacked according to the experimental data available. The CFD methodology applied is based on a three-dimensional, finite difference, compressible flow Euler solver that includes the source terms belong...
A tool for designing robust autopilots for ramjet missiles
Kahvecioğlu, Alper; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2006)
The study presented in this thesis comprises the development of the longitudinal autopilot algorithm for a ramjet powered air-to-surface missile. Ramjet Missiles have short time-of-flight, however they suffer from limited angle of attack margins due to poor operational-region characteristics of the ramjet engine. Because of such limitations and presence of uncertainties involved, Robust Control Techniques are used for the controller design. Robust Control Techniques not only provide an easy limitation/uncer...
Conceptual internal design and computational fluid dynamics analysis of a supersonic inlet
Alemdaroğlu, Mine; Özyörük, Yusuf; Department of Aerospace Engineering (2005)
In this thesis, the conceptual internal design of the air inlet of a supersonic, high altitude, solid propellant ramjet cruise missile is performed. Inviscid, compressible CFD analysis of the designed inlet is made in order to obtain qualitative and quantitative performance characteristics of the inlet at different operating conditions. The conceptual design of the inlet is realized by using analytical relations and equations, correlations derived from numerous available past experimental data and state-of-...
Navigation algorithms and autopilot application for an unmanned airvehicle
Kahraman, Eren; Alemdaroğlu, Hüseyin Nafiz; Nalbantoğlu, Volkan; Department of Aerospace Engineering (2010)
This study describes the design and implementation of the altitude and heading autopilot algorithms for a fixed wing unmanned air vehicle and navigation algorithm for attitude and heading reference outputs. Algorithm development is based on the nonlinear mathematical model of Middle East Technical University Tactical Unmanned Air Vehicle (METU TUAV), which is linearized at a selected trim condition. A comparison of nonlinear and linear mathematical models is also done. Based on the linear mathematical model...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Yalçın, “Design and performance analysis of a variable pitch axial flow fan for Anakara wind tunnel,” M.S. - Master of Science, Middle East Technical University, 2006.