Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Gas-kinetic methods for 3-d inviscid and viscous flow solutions on unstructured/hybrid grids
Download
index.pdf
Date
2007
Author
Ilgaz, Murat
Metadata
Show full item record
Item Usage Stats
2
views
5
downloads
In this thesis, gas-kinetic methods for inviscid and viscous flow simulations are developed. Initially, the finite volume gas-kinetic methods are investigated for 1-D flows as a preliminary study and are discussed in detail from theoretical and numerical points of view. The preliminary results show that the gas-kinetic methods do not produce any unphysical flow phenomena. Especially the Gas-Kinetic BGK method, which takes into account the particle collisions, predicts compressible flows accurately. The Gas-Kinetic BGK method is then extended for the solution of 2-D and 3-D inviscid and viscous flows on unstructured/hybrid grids. The computations are performed in parallel. Various inviscid and viscous test cases are considered and it is shown that the Gas-Kinetic BGK method predicts both inviscid and viscous flow fields accurately. The implementation of hybrid grids for viscous flows reduces the overall number of grid cells while enabling the resolution of boundary layers. The parallel computations significantly improve the computation time of the Gas-Kinetic BGK method which, in turn, enable the method for the computation of practical aerodynamic flow problems.
Subject Keywords
Aeronautics.
URI
http://etd.lib.metu.edu.tr/upload/2/12608241/index.pdf
https://hdl.handle.net/11511/17220
Collections
Graduate School of Natural and Applied Sciences, Thesis