Hide/Show Apps

Remote sensing study of sürgü fault zone(Malatya, Turkey)

Koç, Ayten
The geometry, deformation mechanism and kinematics of the Sürgü Fault Zone is investigated by using remotely sensed data including Landsat TM and ASTER imagery combined with SRTM, and stereo-aerial photographs. They are used to extract information related to regional lineaments and tectono-morphological characteristics of the SFZ. Various image processing and enhancement techniques including contrast enhancement, PCA, DS and color composites are applied on the imagery and three different approaches including manual, semi automatic and automatic lineament extraction methods are followed. Then the lineaments obtained from ASTER and Landsat imagery using manual and automatic methods are overlaid to produce a final lineaments map. The results have indicated that, the total number and length of the lineaments obtained from automatic is more than other methods while the percentages of overlapping lineaments for the manual method is more than the automatic method which indicate that the lineaments from automatic method does not discriminate man made features which result more lineaments and less overlapping ratio with respect to final map. It is revealed from the detail analysis that, the SFZ displays characteristic deformation patterns of strike-slip faults, such as pressure ridges, linear fault controlled valleys, deflected stream courses, rotated blocks and juxtaposition of stratigraphical horizons in macroscopic scale. In addition to these, kinematic analyses carried out using fault slip data indicated that the Sürgü Fault Zone is dextral strike-slip fault zone with a reverse component of slip and cumulative displacement along the fault is more than 2 km.